

คำนำ

หนังสือคู่มือ DIE MAINTENANCE เล่มนี้ได้จัดทำขึ้นมามีวัตถุประสงค์เพื่อเป็นการรวบรวมความรู้การ ทำงานและประสบการณ์ของพนักงาน DIE MAINTENANCE ของทุกท่านที่ได้ไป TRAINING ที่ประเทศญี่ปุ่น หลังการกลับมาของพนักงานจึงได้นำประสบการณ์ของแค่ละบุคกลมารวบรวมและจัดทำเป็นคู่มือการสอนและการ MAINTENANCE แม่พิมพ์อย่างถูกวิธีและเพื่อนำความรู้ของทุกท่านมาเผยแพร่ให้กับเพื่อนร่วมงานให้มีความเข้าใจ และนำไปปฏิบัติในการ MAINTENANCE แม่พิมพ์อย่างถูกต้องถูกวิธีดังนั้นพนักงานทุกท่านที่ได้ไป TRAINING จึงได้เรียบเรียงหัวข้อเรื่องของการปฏิบัติงานและขั้นตอนในการแก้ไขปัญหาที่พบถึงวิธีการแก้ไขให้เกิดความแม่นยำ เที่ยงตรงรวดเร็วและได้แนวคิดในการทำงานที่ได้รับมาประยุกต์ใช้เพื่อได้ถ่ายทอดให้กับเพื่อนร่วมงานและพนักงาน ใหม่ในหน่วยงานได้เกิดความเข้าใจและทราบถึงกระบวนการทำงานต่างๆในการปฏิบัติให้มีระบบมากขึ้นอย่างเช่น หลักการเชื่อม INSERT แต่ละชนิดการเปลี่ยน MAT'L การ MACHINE การSPORT แม่พิมพ์และอุปกรณ์ใน การทำงานของแม่พิมพ์ที่มี SPEED การ RUN สูงเช่น MACHINE TRANSFER LINE BLANK การใช้ ROBOT แทนการทำงานของพนักงานของ LINE ASS'Y JIG COMP. และสร้างการทำงานให้เป็นทีมในหน่วยงาน

ซึ่งเป็นการสะสมความรู้ของพนักงานที่ได้ไป TRAINING กลับมานำมาถ่ายทอดและแนะนำต่อเพื่อน
พนักงานให้มีความรู้เพิ่มมากขึ้นและยังได้รู้จักวัฒนธรรมในการทำงานของการซ่อมสร้างแม่พิมพ์ในประเทศญี่ปุ่น
และหวังเป็นอย่างยิ่งว่าคู่มือการ DIE MAINTENANCE เล่มนี้จะเป็นวิชาความรู้และถ่ายทอดกับพนักงานคนรุ่นใหม่
ได้อย่างมีประโยชน์และนำไปใช้ปฏิบัติให้เกิดผลสำเร็จในการทำงานได้ดียิ่งขึ้นมากกว่าเดิม

สารบัญ

	หน้า
วัตถุประสงค์ของการจัดทำคู่มือ DIE MAINTENANCE แม่พิมพ์	1
ขั้นตอนการเตรียมตัวก่อนการเชื่อมงานแม่พิมพ์	2 - 7
งานเชื่อมเหล็กแต่ละชนิด รองพื้น, แรงดึงสูง DC29-9 (DC 312), DIL 29-9 (DIL 312), DIL 312M	8 - 12 (8 - 12)
ขั้นตอนการเชื่อม, แก้ไขงานคมตัดต่างๆ ครีบ PART BARI, PART เป็น R DC 600W, DIL 600W, DC 600L, DC-11CR/DCL -11CR DC 600FC, DIL 600FC, DC 600FCD, DC600MW, DC600M	13 - 56 (20 - 27) (28 - 38)
DC 650/DC 650H, DIL 650, DC 55, DIL 55	(39 - 46)
DC 520, DIL 520, DC 66, DIL 66	(47 - 56)
ขั้นตอนการใช้ลวดเชื่อม DAICHIN, ซ่อมหน้าเครื่อง PIERCE DIE FLAME HARD	57 - 60 (59 - 60)
ขั้นตอนการใช้ลวดเชื่อมทองเหลืองซ่อมงาน PRESS DIE DIL - 11, DIL - 12	61 - 64 (64)
ขั้นตอนการแก้ไข DIE SCRATCH และการเชื่อมส่งชุบแข็ง Full Hard, TD Coating TIC Coating, Oerlikon Balzers Coating (TiAIN Multilayer), Kanuc Treament Coating	65 - 80
DCR-61 SB, DS61G, SKD 11, DKD 11T	(67 - 80)
ขั้นตอนการแก้ใขงาน PART ย่น ในแม่พิมพ์เหล็กหล่อ PROCESS DRAW และเชื่อมส่งชุบ Hard Chrome DC 220, DC Re - COPY, DC220 SUPER DIL 220 SUPER, DC 220SM, DC 220 SUPER HARD, DC 220SHM DCW, DCNi60Fe, DCNi60M, DCNI99	81 - 106 (84 - 91) (92 - 96) (99 - 106)
เทคนิคและขั้นตอนการเชื่อม, งานเชื่อมคมตัด, งานเชื่อมชุบ Hard Chrome, งานเชื่อมชุบ TD, TIC Coating, (Ti AIN Multilayer), Kanuc Treament Coating	107 - 113

คู่มือในการ TRAINING พนักงานแผนก DIE MAINTENANCE

รวบรวมหัวข้อผลงานจากประสบการณ์การทำงานจริงและความรู้ที่ได้รับจากการไป TRAINING JAPAN สู่เพื่อนร่วมงานและในการ TRAININGพนักงานรุ่นใหม่

วัตถุประสงค์ของการจัดทำคู่มือ MAINTENANCE แม่พิมพ์

- 1. เพื่อนำความรู้ที่ได้จากการเรียนรู้มาพัฒนาใช้ในส่วนงานของบริษัทหรือในแผนก
- 2. เป็นการรวบรวมเทคนิคและความรู้การแก้ไขมารวมเป็นคู่มือในการ MAINTENANCE แม่พิมพ์
- 3. เป็นการนำเอาวัฒนธรรมทางค้านการทำงานต่างประเทศมาเผยแพร่กับพนักงานให้รู้และนำไปปฏิบัติ
- 4. เพื่อเป็นการถ่ายทอด,เทคนิก,ความรู้,ประสบการณ์, ที่ได้พบเห็นที่ต่างประเทศให้กับเพื่อนร่วมงาน
- 5. เป็นสื่อความรู้ในการนำเทคโนโลยีที่พบเห็นมาปรับปรุงประยุกต์ใช้ในบริษัท
- 6. แนะนำวิธีการทำงานหน้าที่และขั้นตอนในการวางแผนงานในการ MAINTENANCE แม่พิมพ์
- 7. เพื่อให้พนักงานเกิดความเข้าใจในขั้นตอนปฏิบัติและวิธีการทำงานให้มากยิ่งขึ้นกว่าเดิม
- 8. เพื่อเป็นหัวข้อในการทดสอบพนักงานในการ TRAINING MAINTENANCE แม่พิมพ์

จากวัตถุประสงค์ของการจัดทำคู่มือที่กล่าวมาข้างต้นนี้ ทางคณะผู้จัดทำต้องขอขอบคุณแหล่งการสอนและให้ข้อมูลต่างๆ

การ TRAINING วิธีการเชื่อมไฟฟ้าเบื้องต้น DAICHIN

- 1. ตรวจ CHECK ระบบคู้เชื่อมสวิทซ์ BRAKER สายเชื่อมหน้ากากตัวปรับแรงกระแสไฟ สูงค่ำ
- 2. ตั้งกระแสไฟให้ BALANCE กับชิ้นงาน เล็ก, หนา, บาง
- 3. ตรวจ CHECK ชนิดของวัสคุ เช่น เหล็ก FC~30,S45C,HMD5,SKD11,DC53,SLD,ก่อนซ่อม, ก่อนเชื่อม
- 4. นำชิ้นงานที่จะทำความสะอาคตรงจุดที่จะเชื่อม
- 5. ถ้าชิ้นงานแตกร้าวให้เจียรบากเซาะร่องรอยร้าวก่อนเชื่อม
- 6. เลือกใช้ลวคเชื่อมตามชนิคของวัสคุ เหล็กหล่อ,เหล็กเหนียว,เหล็กแข็ง, สแตนเลส
- 7. ถ้าเป็น DIE เหล็กชุบแข็ง, เหล็กหล่อ ให้อุ่นชิ้นงานก่อนเพื่อไล่คราบน้ำมันออกและป้องกันการแตกร้าว และเป็นตามด
- 8. ถ้าเป็นชิ้นงานเหล็กหล่อ, เหนียว CUTTER FLANG, REST FORM ให้ใช้ลวดเชื่อมรองพื้นก่อน แล้วค่อยใช้ลวดเชื่อมจริงลงทับ
- 9. ถ้าเป็นตามด เจียรเซาะรอยตามดออกให้หมดทำความสะอาดและเชื่อมทับกัน 2 ครั้งจนหมดรอยตามด 10. การเชื่อมบนผิวชิ้นงานที่ชุบ HARD CHROME, TD, TIC COATING
 - ให้ทำความสะอาคชิ้นงานตรงจุดที่จะเชื่อมก่อน
 - อุ่นผิวชิ้นงานเป่าช้าๆ จนเป็นสีดำ (300°C) เพื่อป้องกันการแตกร้าวหลังเชื่อม
 - เชื่อมให้เร็วเท่าที่จะทำได้อย่าให้โดนลมและอย่าใช้พัดลมเป่า
 - เชื่อมส่งชุบ Hard Chrome ใช้ DC220, DC220 SUPPER <ARC>, <TIG DIL220 SUPPER>
 - เชื่อม Full Hard, TD,TIC COATING ใช้ DCR61 SB <ARC>,< TIG DS61G>,< DKD 11>,< DKD 11T>
- 11.หลังเชื่อมชิ้นงานเสร็จ ให้ทำความสะอาดพื้นที่บริเวณที่เชื่อม
- 12. ทำความสะอาคสายเชื่อม หน้ากาก เก็บเข้าที่เดิมให้เรียบร้อย
- 13. CHECK ปิดสวิทซ์ศู้เชื่อมหลังเลิกใช้งานทุกครั้ง

มาตรฐานในการใช้ลวดเชื่อม DAICHIN กับกระแสไฟ DC+AC

- ขนาดของลวดเชื่อม DAI 2.5 x 350 MM. ใช้กระแสไฟเชื่อม 60~95 (แอมแปร์)
- ขนาดของลวดเชื่อม DAI 3.2 x 350 MM. ใช้กระแสไฟเชื่อม 80~125 (แอมแปร์)
- ขนาดของลวดเชื่อม DAI 4.0 x 350 MM. ใช้กระแสไฟเชื่อม 130 ~ 180 (แอมแปร์)

การ TRAINING วิธีการเชื่อมอาร์กอน ARGON เบื้องต้น DAICHIN

- 1. CHECK GAS ARGON ,น้ำ,สาย,หัวเชื่อม หน้ากาก,ระบบกระแสไฟ
- 2. SET ปรับ GAS ตั้งกระแสไฟให้พอดีกับชิ้นงาน (ความหนา,บาง) ก่อนที่จะทำการเชื่อมและทำการ ทดลองเชื่อม CHECK กระแสไฟก่อนทำการจริง
- 3. เวลาเชื่อมจะต้องให้ปลายลวดเชื่อมห่างจากชิ้นงานประมาณ 2 MM. เดินช้าๆให้ฟลั๊กซ์เชื่อมละลายก่อนค่อย เติมเนื้อเชื่อม ต้องเชื่อม 3 ชั้นขึ้นไปจึงจะได้ความแข็งที่กำหนดไว้
- 4. ทำความสะอาคชิ้นงานก่อนเชื่อม ถ้าเป็นชิ้นงานเหล็กหล่อหรือชุบแข็งให้อุ่นชิ้นงานก่อน
- 5. เมื่อทำการเชื่อมจะต้องใช้ลมเป่าควันออกจากตัวทุกครั้งถ้าเป็นการเชื่อมชิ้นงานอลูมิเนียม
- 6. เลือกใช้ลวคเชื่อมตามชนิคของชิ้นงาน,เหล็กหล่อ,เหล็กเหนียว,เหล็กแข็ง,สแตนเลส,อลูมิเนียม
- 7. หลังเชื่อมเสร็จให้ปีควาล์ว GAS,น้ำ,สวิทซ์ไฟลงและทำความสะอาดทุกครั้ง
- 8. เก็บทำความสะอาด พื้นที่ , สายเชื่อม หน้ากากเก็บเข้าที่เดิมให้เรีย<mark>บร้อย</mark>

<u>สาเหตุของตามดหลังเชื่อมบนเหล็กหล่อ</u>

สาเหตุ

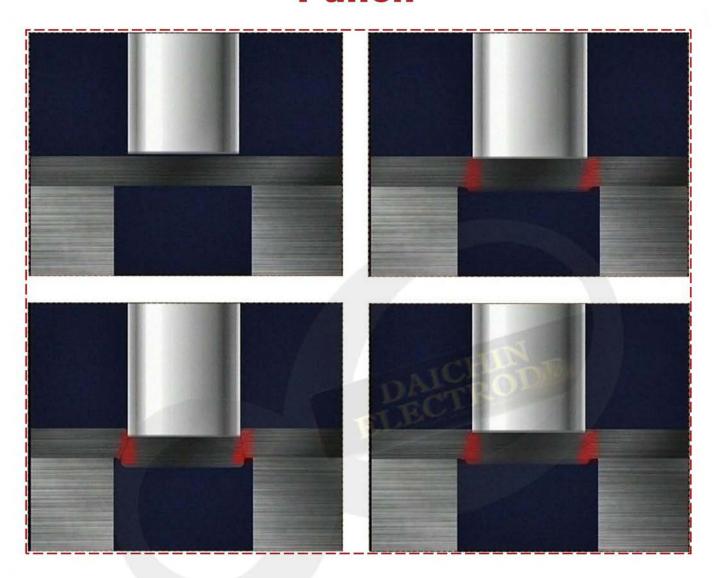
- 1. เนื้อเชื่อมมี CARBON มาก
- 2.FLUX ของลวดเชื่อมมีความชื้น
- 3.มีคราบน้ำมันในเนื้อเหล็กหล่อ
- 4.เชื่อมแบบโบก
- 5.PEENING หลังเชื่อม
- 6.ปล่อยไฟแรงเกินไป

วิธีการแก้ไข

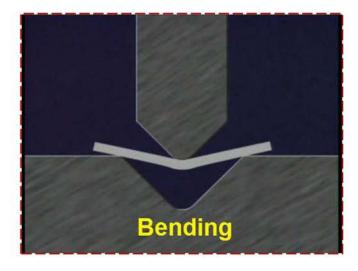
- 1.ให้ใช้ลวดเชื่อม PURE NICKEL เพื่ออุดตามคก่อนเชื่อม
- 2.อบลวคเชื่อมก่อนใช้งานหรือใช้ลวคจิ้มติคกับ Ground 3 วินาที
- 3.ให้เป่าด้วยแก๊สบริเวณเชื่อมให้ห่างจากจุดเชื่อมไป 10 CM.
- 4.ให้เชื่อมแบบลากตรง
- 5.ให้ใช้ฆ้อนทุบนวครอยเชื่อมให้เนื้อแน่น
- 6. ปล่อยไฟให้น้อยเท่าที่จะเชื่อมได้

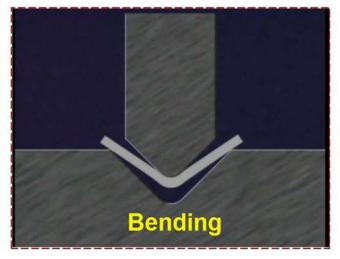
สาเหตุของการแตกร้าวหลังเชื่อม

สาเหตุ

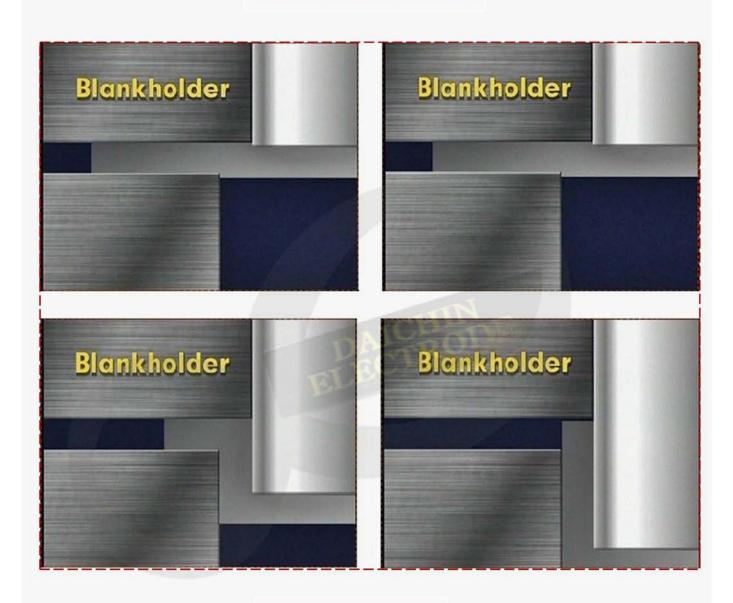

- 1.เชื่อมเสร็จแล้วเนื้อเชื่อมเย็นเร็วเกินไป
- 2.เวลาเจียรจนเนื้อแคงใหม้
- 3.ลวดเชื่อมแข็งเกินไปทำให้เปราะ
- 4. ไม่ PEENING หลังเชื่อม
- 5.เชื่อมแบบลากยาวเกินไป

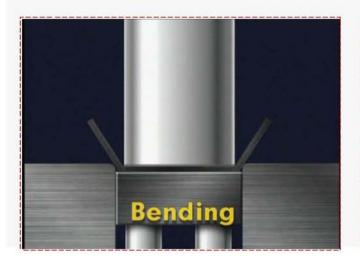
<u>วิธีการแก้ไข</u>


- 1.อย่าใช้ลมเป่าแนวเชื่อมและเชื่อมในที่ไม่มีลมโกรก
- 2.ค่อยๆเจียรใช้ใบเจียรที่คมและนิ่ม
- 3.ใช้ลวคเชื่อมที่เหนียวและไม่แตกง่าย
- 4.ให้ PEENING เพื่อลดความเครียดของเนื้อเชื่อม
- 5.ให้เชื่อมแบบกลุ่ม

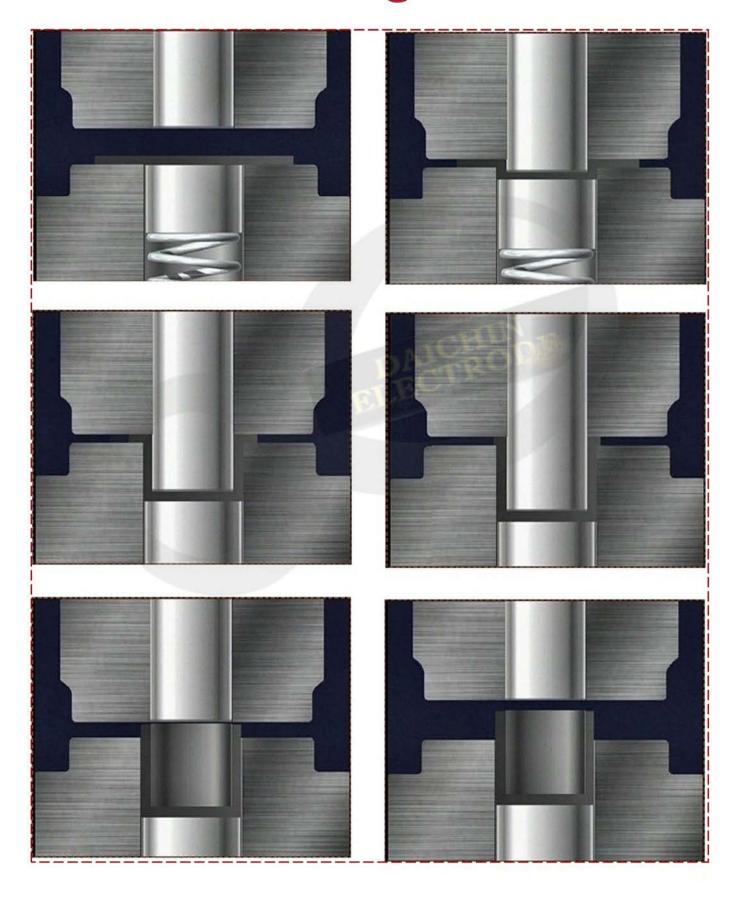


Punch


Bending



Blankholder


Bending

Drawing die

ผู้ปฏิบัติงานจะต้องหัดเชื่อม หัดกลึงใช้เครนและเครื่องจักรต่างๆ

การซ่อมแม่พิมพ์ แต่ละปัญหาขึ้นอยู่กับองค์ประกอบเครื่องมือในการซ่อม ยกตัวอย่างเช่น ซ่อมครีบ PARTย่น
PART แตก PART เป็นรอยต่างๆ และการนำเหล็กต่างๆ ไปชุบเช่น SKD 11, DC53, DCMX ชุบอะไรใช้ทำอะไร
ในเบื้องต้นและเหล็ก FRAME HARD เช่น HMD-5 ใช้ทำอะไร ชุบอะไร เหล็กหล่อ FC300 ต่างกับ FCD อย่างไร
และชุบอะไรได้บ้าง

แม่พิมพ์นั้นมีอยู่ 2 ชนิคหลักคือ DIE PROCESS และ DIE P/G อยู่ที่การขึ้นรูปของ PART ว่าเหมาะสมของ การวาง PROCESS DIE หรือเปล่า

ปัญหาหลักๆ

- 1. ปัญหาเป็นคริบ ต้องมีการแก้ไขอย่างไร ความหนาของเหล็กนั้นเหมาะสม CUTTER หรือไม่ PART หนา ต้องใช้ MAT อะไร ทำ CUTTER PART บางต้องใช้ MAT อะไร ทำ CUTTER จึงจะเหมาะสมกับ SIZE ของ แม่พิมพ์
- 2. ปัญหา PART ย่นต้องมีการแก้ไขอย่างไรการ CHECK ต้องมีการ CHECK หน้า BLANK HOLDER กับ UPR DIE ว่ามีการสัมผัสกันหรือเปล่า หรือ จะต้องมีการเชื่อมเพิ่ม BEAD R ตรงที่ PART ย่นหรือเปล่า นี่ คือหลักการเช็คเบื้องต้น
- ปัญหา PART แตกต้องมีการแก้ไขอย่างไร ต้องมีการ CHECK TRY บนเครื่อง PRESS CHECK AIR BALANCE CUSTION ว่าเท่ากันหรือเปล่า CHECK STOPPER ต่างๆ
- 4. ปัญหา PART เป็นรอยจาก PART หนาและ PART บาง ต้องใช้ MAT อะไรทำการ INSERT และกี่องศา การขึ้นรูปต้องใช้ MAT อะไรทำการขึ้นรูปลึกและ PART หนาต้องใช้ MAT SKD11 หรือ DC53 ชุบ TIC หรือ TD COATING เพื่อลดปัญหา PART เป็นรอยครูด หรือ PART ที่บาง น่าจะใช้แค่ MAT HMD-5 หรือ เหล็ก FC 250 ชุบ HARD CRHOME ก็น่าจะพอแล้ว
- 5. ปัญหา SCARP ตันไม่ไหลจาก PROCESS BKACN-PI CPM-PI-SEP นั้นอยู่ที่การ DESIGN ของการทำ แม่พิมพ์ว่าจะวาง PROCESS ไหนก่อนที่ PROCESS ไหน จะต้องมี PI เยอะน่าจะรวมอยู่ที่ PROCESS ไหน
- 6. ฐาน INSERT บางเกินไปหรือเปล่า CAM-CUT ที่ครีบบ่อย น่าจะทำอย่างไร เช่นควรจะอยู่ที่ PROCESS ไหนหรือจะต้องเพิ่ม PROCESS ใหม่เพื่อจะให้เหมาะสมกับเครื่องที่รองรับการผลิต

Problem Steels and Hard Surfacing DC29/9(DC312)

มาตรฐานสากล

Welding of Problem Steels (High-Carbonsteels, High-Alloyed Steels, Tool Steel, Etc.)

Welding of the First Layer Deposit to the Base Melal for Hard Surfacing.

ส่วนผสมทางเคมี (% wt.)

C ~ 0.10

Cr ~ 29.2

Chemistry

Mn ~ 0.70

Ni ~ 9.50

Si ~ 1.25

Mo ~ 0.75

ใช้เชื่อมบนเหล็ก

TGC-600, SFH 5, HMD, SX-105V, ICD5, OKS 5, GO5, GM 190/M, KY870, HK-600A/B, SKD 11, WST 2336, HK-700, SKS-3, SG2, W2601, TD2, AUD11, SLD, DC53, DCMX, FC-250, FC-300, GM238M, FCD-500, 600, FCD550/550M, FCD-700, KSCD80015, (FCD FH), GM240M, CH-891, GM241, NKM240, HD-700, GGG-70L, TGC-600.

กระแสไฟฟ้าที่เชื่อม

DC-/AC (Uo: 60 V)

DIA x LENGTH (mm.)	กระแสไฟฟ้าเชื่อม (Amp)
2.5 x 350	45 ~ 65
3.2 x 350	70 ~ 90
4.0 x 350	100 ~ 120

คุณสมบัติทางกล

High Titanium Oxide

➡ Tensile Strength (%)

775

□ Elongation (%)

26.0

🖒 🏻 ความแข็ง (HRC.)

28~30

คุณลักษณะเด่น

- ผลิตจากเหล็กกล้าไร้สนิมคาร์บอนต่ำ มีปริมาณ โครเมี่ยม 29% นิเกิล 9% และ โมล์คินั่ม หุ้มค้วยฟลั๊กซ์ High Titanium Oxide

- ใช้เชื่อมพอกผิวชิ้นส่วนเครื่องจักรที่เกิดจากการเสียดสี
- ➡ เชื่อมต่อเหล็กกล้าที่เชื่อมยาก เชื่อมต่อเหล็กที่มีส่วนผสมทางเคมีแตกต่างกัน และเชื่อมช่อมบำรุงลวดเชื่อมชนิดนี้เป็นลวดเชื่อมแรงดึงสูง

Problem Steels and Hard Surfacing DIL29/9 (DIL312)

มาตรฐานสากล

Welding of Problem Steels (High-Carbonsteels, High-Alloyed Steels, Tool Steel, Etc.)

Welding of the First Layer Deposit to the Base Melal for Hard Surfacing.

ส่วนผสมทางเคมี (% wt.)

C ~ 0.12

Cr ~ 29.2

Chemistry

Mn ~ 0.70

Ni ~ 9.90

Si ~ 1.25

Mo ~ 0.75

ใช้เชื่อมบนเหล็ก

TGC-600,SFH 5,HMD,SX-105V,ICD5,OKS 5,GO5,GM 190/M ,KY870,HK-600A/B SKD 11,WST 2336,HK-700,SKS-3,SG2,W2601,TD2,AUD11,SLD,DC53,DCMX FC-250,FC-300,GM238M,FCD-500,600,FCD550/550M,FCD-700,KSCD80015, (FCD FH),GM240M,CH-891,GM241,NKM240,HD-700,GGG-70L,TGC-600

กระแสไฟฟ้าที่เชื่อม

DIA x LENGTH (mm.)	SHIELD GAS
1.6 x 1000	Oxyfuel Gas or Argon
2.4 x 1000	Oxyfuel Gas or Argon

คุณสมบัติทางกล

⇒ Tensile Strength (%)

775

➡ Elongation (%)

26.0

🖈 ความแข็ง (HRC.)

28~30

คุณลักษณะเด่น

- 🖈 ผลิตจากเหล็กกล้าไร้สนิม คาร์บอนต่ำ มีปริมาณ โครเมี่ยม 29% นิเกิล 9% และMo 0.75
- 🖈 เชื่อมเติมน้ำโลหะรอยเชื่อมได้ดีเยี่ยม
- 🖈 ใช้เชื่อมพอกผิวชิ้นส่วนเครื่องจักรที่เกิดจากการเสียคสี
- ➡ เชื่อมต่อเหล็กกล้าที่เชื่อมยาก เชื่อมต่อเหล็กที่มีส่วนผสมทางเคมีแตกต่างกัน
 และเชื่อมซ่อมบำรุงลวดเชื่อมชนิดนี้เป็นลวดเชื่อมแรงดึงสูง

เรื่องการแก้ไขปัญหา DIE PIERCE BURR (ครีบ)

วิธีและขั้นตอนการแก้ไขปัญหา DIE PIERCE BURR (ครีบ)

ขั้นตอนที่ 1. ปัญหา PART PIERCE BURR ที่เกิดจากปัญหาทั่วไป

สาเหตุ PART PIERCE เป็นครีบและรูคุ้งเกิดจากองค์ประกอบของหลายๆประเด็น เช่นเกิดจากเครื่อง PRESS ที่เอียงของ TABLE, BOOSTER, RAM เกิดจากการใส่ชิ้นงานไม่ตรง SHAPE ไม่ลง LOCK ของแม่พิมพ์การวาง PART หมิ่น ในส่วนนี้จะต้องแก้ไขวิธีการวางและเครื่อง PRESS แต่ถ้าปัญหาเกิดจากแม่พิมพ์พนักงานต้อง TRAINING ปัญหาเกิดจาก เครื่อง PRESS แจ้ง UTILITY และ PLAN การตรวจ CHECK ทุกเดือน

ปัญหา PART เป็นครีบที่เกิดจากปัญหาของแม่พิมพ์ (DIE)

ปัญหาของ PART ครีบคุ้งสาเหตุที่เกิดจากระบบการทำงานของแม่พิมพ์ DIE

- 1. เกิดจากคมตัด แตก , บิ่น , เบียดของคมตัด ก็ทำให้ชิ้นงานเป็นครีบได้ <u>การแก้ไข</u> . ปัญหาของคมตัด
 - 1. CHECK องศาการตัดระหว่าง UPR & LWR
 - 2. เปิด CLEARANCE คมตัดที่เบียดให้ได้ตาม STD. โดยบวกกับ ของความหนา MAT L
 - 3. CHECK ความแข็งและเกรดเหล็กที่นำมาใช้ทำ INSERT คมตัด HMD5, SKD.11,DC53, DCMX
 - 4. ลวดเชื่อมที่นำมาเชื่อมคมตัดคือ <ARC>DC600W,<TIG> DIL600W,<TIG> DIL55 มีความแข็งเกรดเดียวกับ SKD11 หรือ DC53,DCMX,SLD
- 5. แนวเชื่อมที่เชื่อมต้องเชื่อมง่ายไม่เป็นตามด เนื้อแนวเชื่อมจะเป็นแนวเดียวกันกับ INSERT การแก้ไข. ปัญหาของ PUNCH PIERCE ครีบ, คุ้ง
 - 1. สาเหตุเกิดจาก PUNCH กับ BUTTON ตั้งไม่ได้ CENTER จะต้อง SET ตั้ง PUNCH UPR ใหม่ให้ CENTER ตรงกับ BUTTON DIE LWR
 - 2. CLEARANCE ระหว่าง PUNCH กับ BUTTON DIE จะต้องได้ตาม STD. ของ TOLANCE MAT'L
 - 3. แรงกดจับของ PAD หรือ URETHANE จะต้องจับชิ้นงานให้นึ่งก่อนที่ PIERCE
 - 4. RETAINER PUNCH จะต้องมี DOWEL PIN LOCK กันขยับตัวของ PUNCH ได้
 - 5. CHECK องศาในการ PIERCE ถ้าเป็น CAM-PI หรือ CAM-UNIT รวมทั้ง SLIDE ต้องไม่หลวม , คอน
 - 6. การเจาะ PART จะต้องไม่เจาะหมิ่นและเจาะซ้ำกับตำแหน่งเคิม CHECK DESIGN ขั้นตอนนี้ก็จะช่วยแก้ ใขปัญหาของ PART ที่เป็นครีบ โดยถาวรได้ถ้าเกิดปัญหาซ้ำต้องนำ PART & DIE เข้ามาทำการวิเคราะห์ ก่อนทำการแก้ไขและสรุปผลเป็นขั้นตอนว่าเกิดจากสาเหตุใด

เทคนิคการเชื่อม INSERT CUTTER ด้วย ARGON และ ARC

<u>สาเหตุที่ทำการเชื่อมอาร์กอนและเชื่อมไฟฟ้าทำการซ่อมบำรูง</u>

- 1. INSERT CUTTER มีการแตกบิ่น
- 2. INSERT CUTTER มีการสึกหรอ
- 3. INSERT CUTTER มีการแก้ไข คือการเพิ่มหรือลด TRIM LINE

ขั้นตอนการเชื่อม INSERT CUTTER ด้วยอาร์กอนและไฟฟ้า

- 1.ใช้หินเจียร เจียรบริเวณแนว CUTTER ที่ต้องการเชื่อมเพื่อเพิ่มความแข็งแรงของแนว CUTTER ที่จะทำการ เชื่อมขึ้นมาใหม่
- 2.เลือกชนิดของลวดเชื่อมให้เหมาะสมกับการใช้งานของ CUTTER โดยจะมีชนิดของลวดเชื่อมดังนี้
 - 2.1 CUTTER UPR ใช้ลวด<TIG> DIL55, DIL600W หรือ DC600W มีค่าความแข็ง 58~60 HRC.
 - 2.2 CUTTER LWR ใช้ถวด<TIG> DIL66 หรือ <ARC> DC66 มีค่าความแข็ง 45~50 HRC.
 - 2.3 INSERT ทั่วไป ใช้ลวด <TIG> DIL 520 หรือ <ARC> DC520 มีค่าความแข็ง 50~55 HRC.
- 3.การปรับไฟฟ้ารวมถึงการปรับระดับ GAS ARGON ให้เหมาะสมถ้าเป็นแนวที่ใหญ่ ก็ควรใช้ระดับไฟที่สูง ถ้าเป็นแนวที่ไม่ใหญ่มากควรใช้ระดับกลางหรือต่ำกว่าทั้งนี้ต้องขึ้นกับชนิดของก้อน INSERT ด้วย
- 4. ก่อนทำการเชื่อมควรรู้ระยะของแนวการเชื่อม ว่ายาวขนาดเท่าไร หรือทำสัญลักษณ์โดยการเชื่อมหัว และทำการเชื่อมท้ายไว้ก่อนแล้วค่อยเชื่อมเดินแนว
- 5. เมื่อทำการเชื่อมไม่ควรเชื่อมลากยาว ควรจะหยุดพักแนว ในขณะที่แนวเชื่อมยังร้อนอยู่และทำการเชื่อม ต่อไปทำอย่างนี้สลับกันไปจนกว่าจะทำการเชื่อมเสร็จ

ข้อดีของการเชื่อมด้วยอาร์กอน

- 1. เชื่อมเดินแนวลวดเชื่อมง่าย
- 2. สามารถเชื่อมจุดเล็กๆ ได้ง่ายไม่ลุกลามบานปลาย
- 3. เมื่อทำการเชื่อมแล้วสามารถ ทำการเจียรปรับแต่งได้ง่ายกว่าการเชื่อมด้วยการเชื่อมไฟฟ้า

ข้อเสียของการเชื่อมด้วยอาร์กอน

- 1. ไม่สามารถทำการเชื่อมนานๆ ได้เพราะมีความร้อนสูง
- 2. มีกลิ่นเหม็นทำให้เกิดอันตรายต่อสุขภาพ
- 3. แนวเชื่อมมีความแข็งแรงน้อยกว่าการเชื่อมไฟฟ้า

เทคนิคการเชื่อมแนว CUTTER UPR+LWR ให้สะดวกขึ้น

การเชื่อมที่เราทำในการซ่อมแม่พิมพ์นั้น เนื่องมาจากสาเหตุเกิดจากแนว CUTTER ร้าว, แตก, บิ่น, หัก และห่าง ทำให้เกิดครีบในการซ่อม PART นั้นมีอยู่หลายวิธี และวิธีที่เราใช้อยู่ก็คือการเชื่อม

เทคนิคการซ่อมแซมแม่พิมพ์ที่ UPR DIE

การเชื่อมที่เราทำในการซ่อมแม่พิมพ์นั้น เราต้องทำความสะอาดแม่พิมพ์ก่อนเพื่อป้องกันการเกิด ตามค โดยใช้แก๊สลนบริเวณที่เราจะทำการเชื่อม ต้องใช้ลวดเชื่อมที่มีค่าความเข็งที่มากกว่าเพราะถ้าเกิดการ ขบกันจะทำให้ LWR สึก, และง่ายต่อการซ่อมบำรุง

ลวดเชื่อมที่ใช้ในการเชื่อม INSERT UPR DIE

<TIG> DIL 55 ค่าความแข็งคือ 55~60 HRC.

<TIG> DIL600W ค่าความแข็งคือ 58~60 HRC.

<ARC> DC600W ค่าความแข็งคือ 58~60 HRC.

เทคนิคการซ่อมแซมแม่พิมพ์ที่ LWR DIE

ก่อนที่จะทำการซ่อมแซมแม่พิมพ์นั้นเราจะต้องทำความสะอาคก้อน INSERT เพื่อป้องกันการเกิด ตามด โดยการใช้แก๊สลนตรงบริเวณที่เราจะทำการเชื่อม ต้องใช้ลวคเชื่อมที่มีความแข็งที่อ่อนกว่าตัว UPR DIE เพราะจะทำให้เกิดความเสียหาย และจะทำให้ง่ายต่อการซ่อมบำรุง

ลวดเชื่อมที่ใช้ในการเชื่อม INSERT LWR DIE

<TIG> DIL66 ค่าความแข็งคือ 40 ~ 50 HRC.

<ARC> DC66 ค่าความแข็งคือ 40 ~ 50 HRC.

<TIG> DIL520 ค่าความแข็งคือ 50 ~ 55 HRC.

<ARC> DC520 ค่าความแข็งคือ 50 ~ 55 HRC.

ลักษณะการทำงานของ CUTTER

ด้านบนต้องมีความแข็งมากกว่าตัวคมตัด LWR DIE เพราะถ้าคมตัดแตกหรือบิ่นลึกสามารถจะ ทำการซ่อมบำรุงได้ง่ายและสะดวกมากขึ้น

UPR DIE จะได้ความแข็ง 58-60 HRC.

CODE ลวดเชื่อม = TIG DIL55

CODE ลวดเชื่อม = Arc DC600W

ลักษณะการทำงานของ CUTTER


1.6

LWR DIE จะได้ความแข็ง 50 ~ 54 HRC.

DIL66

CODE ลวดเชื้อม = TIG DIL66, ARC - DC66 40 ~ 50 HRC.

CODE ลวดเชื่อม = TIG DIL520, ARC - DC520 50 ~ 55 HRC.

DIL600W

DIL55

การปรับแต่ง CUTTER CHECK AWASE (TRIM, BL)

ในขั้นตอนการทำงานนี้ เป็นการทำงานต่อจากการเชื่อมคือการเจียร

การปรับแต่ง CUTTER จากปัญหาครีบ ซึ่งเกิดจากการเบียดตัวของ CUTTER ที่ไม่ได้ STD เกิดจากการตัดลึกจนเกินไปจึงมีการสึกหรอและ CUTTER ห่างไม่ได้ STD เทคนิคนี้ยังรวมถึงการขึ้นเครื่องเช็ค

AWASE อีกด้วยดังนี้

1. การเจียรปรับแต่ง CUTTER ควรเหลือพื้นที่ไว้ CHECK หรือใกล้เคียงของเดิม

2. ใช้หินหยาบเก็บแนว CUTTER ให้เรียบเป็นแนวเคียวกัน

3. การ CHECK AWASE โดยการใช้ดินน้ำมันเช็คติดบน CUTTER ที่ทำการเจียรปรับแต่งเพื่อในการ ตัดของแนว CUTTER จะไม่เสียหายจากนั้นเจียรปรับแต่งใช้แนวดินน้ำมันปรับแต่งให้เรียบ

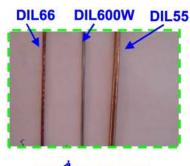
4. เมื่อทำการเจียรปรับแต่งได้แล้วต้องเช็คคมตัดโดยการใช้สีเสนเพื่อดูรอยเบียคระยะห่าง และความ ลึกของแนว CUTTER

การปรับแต่ง CUTTER CHECK AWASE (TRIM, BL)

5. ทำการเจียรปรับแต่ง CUTTER ให้ได้ STD 90 C° เพื่อเป็นการรับน้ำหนักของการตัดควรเก็บราย ละเอียดโดยการขัด CUTTER ด้วยหินละเอียดเพื่อเพิ่มอายุการใช้งานของคมตัด

ข้อดีของการใช้เทคนิคลักษณะนี้

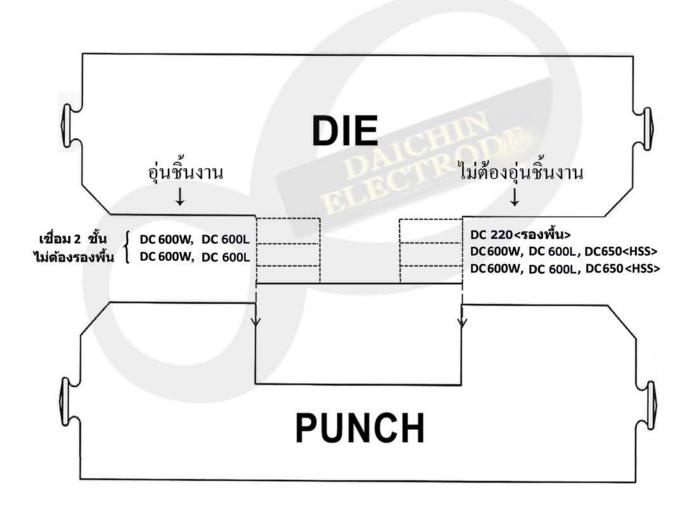
- 1. ลดความเสียหายของ CUTTER
- 2. เพิ่มอายุการใช้งานของ CUTTER
- 3. ลดความเสี่ยงการเกิดความเสียหายในการทำการ CHECK AWASE


ข้อเสียของการใช้เทคนิคลักษณะนี้

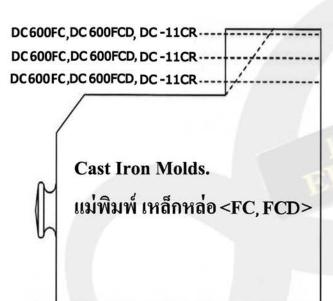
- 1. ใช้เวลาการทำงานค่อนข้างสูง
- 2. การเชื่อมส่งกลิ่นเหม็นอาจจะทำให้เกิดอันตรายต่อสุขภาพได้
- 3. แนวที่ทำการเชื่อมไม่ค่อยแข็งแรงไม่เหมือนกับการเชื่อมไฟฟ้า

รูปแสดงการปรับไฟ,ลวดเชื่อม,และวิธีการเชื่อม

การปรับกระแสไฟเชื่อม


ลวดเชื่อม ARGON

วิธีการเชื่อมชิ้นงาน


วิธีเชื่อมคมตัด ตระกูลเหล็กแข็ง

ประเภทเหล็ก: TGC - 600, SFH5, HMD,SX - 105V, ICDS, OKS5, GOS, GM190/M, KY870, HK - 600 A/B, SKD11, WST2336, HK - 700, SKS - 3, SG2, W2601, TD2, AUD11, SLD, DC53, DCMX

วิธีเชื่อมคมตัด ตระกูลเหล็กหล่อ

ประเภทเหล็ก : FC - 250, FC - 300, GM 238M, FCD -500 , 600FC,D550,550M, FCD - 70 ,

KSCD80015, (FCD FH) GM 240M, CH - 891, GM241, NKM240, HD - 700

GGG - 70L, TGC - 600

Tools Steel For Cutter of Various Kinds DC 600W

LWR-DIE (LOWER DIE)

มาตรฐานสากล		A~ ชุบแข็งโดยปล่อยให้เย็นในอากาศ (Air Hardening)						
		A2 thru A10 Air Hardening	Tool Steel	(COLD WORK TOO	L STEEL)			
ส่วนผสมทางเคมี (% wt.)		C ~ 0.46	Si ~	2.53				
Chemistry		Cr ~ 8.46	Mo ~	1.30				
		Mn ~ 0.41	Fe & Ort	her Balance.				
เนื้อโลหะรอยเชื่อม	\Rightarrow	ความแข็ง (HRC.) As Welded	~	50 ~ 55				
	ightharpoons	ความแข็ง (HRC.) Air Hardening	~	50 ~ 60				
	ightharpoons	Heat Treatment	~~	550 C Tempering				
เชื่อมบนเหล็ก	\Rightarrow	เชื่อมบนตระกูลเหล็กแข็งทุกชนิคไม่	ເລີ້າ ເວັ້າ ທີ່	1 2 2 3 3 3 4 4 4				
เมอทุกหเนยแ								
		TGC-600,SFH 5,HMD,SX-105V,IC						
		SKD 11,WST 2336,HK-700,SKS-3,						
	\Rightarrow	เชื่อมบนตระกูลเหล็กหล่อทุกชนิด ควรรองพื้นด้วย DC220 หรือ DCNI99, DCW						
		FC-250,FC-300,GM238M,FCD-500,600,FCD550/550M,FCD-700,KSCD80015,						
		(FCD FH),GM240M,CH-891,GM241,NKM240,HD-700,GGG-70L,TGC-600						
u 1 4								
กระแสไฟฟ้าที่เชื่อม		DC-/AC (Uo: 60 V)			r			
		DIA x LENGTH (MM.)	กระแ	ทไฟฟ้าเชื่อม (AMP.)				
		2.5 x 350		45 ~ 65				
		3.2 x 350		70 ~ 90				
		4.0 x 350		100 ~ 120				
คุณลักษณะเค่น	\Rightarrow	เชื่อมซ่อมสร้างแม่พิมพ์ปากกรรไกร	เหล็กหล่อ,	เหล็กเหนียว,เหล็กแข็ง				
	\Rightarrow	เชื่อมชิ้นส่วนที่รับภาระแรงกระแทกเ	เละแรงอัดเ	สูง				
	\Rightarrow	เชื่อมพอกผิวแข็ง ชิ้นส่วนเครื่องจักรในอุตสาหกรรมที่รับแรงกระแทก						
	\Rightarrow	เชื่อมพอกที่ใช้กับงานเสียคสีคีเลิศ						

เชื่อมง่าย แนวเชื่อมสวยไม่มีตามค สามารถเชื่อมได้ทุกท่าเชื่อม

Tools Steel For Cutter of Various Kinds DIL 600W

LWR-DIE (LOWER DIE)

มาตรฐานสากล

A~ ชุบแข็งโดยปล่อยให้เย็นในอากาศ (Air Hardening)

A2 thru A10 Air Hardening Tool Steel (COLD WORK TOOL STEEL)

ส่วนผสมทางเคมี (% wt.)

C ~ 0.45

Si ~ 2.51

Chemistry

Cr ~ 8.6

Mo ~ 1.28

Mn ~ 0.50

Fe & Other Balance

เนื้อโลหะรอยเชื่อม

🖈 ความแข็ง (HRC.) As Welded

50 ~ 55

🖈 ความแข็ง (HRC.) Air Hardening

 $50 \sim 60$

Heat Treatment

670 C Tempering

เชื่อมบนเหล็ก

⇒ TGC-600,SFH 5,HMD,SX-105V,ICD5,OKS 5,GO5,GM 190/M ,KY870,HK-600A/B SKD11,WST 2336,HK-700,SKS-3,SG2,W2601,TD2,AUD11,SLD,DC53,DCMX FC-250,FC-300,GM238M,FCD-500,600,FCD550/550M,FCD-700,KSCD80015, (FCD FH),GM240M,CH-891,GM241,NKM240,HD-700,GGG-70L,TGC-600

กระแสไฟฟ้าที่เชื่อม

DIA x LENGTH (MM.)	SHIELD GAS				
1.6 x 1000	Oxyfuel Gas or Argon				
2.0 x 1000	Oxyfuel Gas or Argon				
2.4 x 1000	Oxyfuel Gas or Argon				

คุณถักษณะเด่น

- ⇒ เชื่อมซ่อมสร้างแม่พิมพ์ปากกรรไกร เหล็กหล่อ เหล็กเหนียว เหล็กแข็ง
- 🖈 เชื่อมชิ้นส่วนที่รับภาระแรงกระแทกและแรงอัดสูง
- 🖈 เชื่อมพอกผิวแข็งชิ้นส่วนเครื่องจักรในอุตสาหกรรมที่รับแรงกระแทก
- ผื่อมพอกที่ใช้กับงานเสียดสีดีเลิศ
- 🖈 เชื่อมง่าย แนวเชื่อมสวยไม่มีตามด สามารถเชื่อมได้ทุกท่าเชื่อม

Hard Surfacing on to Cast Iron Cold-Press Molds DC 600FC

มาตรฐานสากล

Build-Up Welded Cutter Edge For Cast Iron Mold.

Coved Electrode : Basic.

ส่วนผสมทางเคมี (% wt.) C ~ 0.24 S ~ 0.004 Fe ~ Balance.

Chemistry Si ~ 0.28 Ni ~ 2.38

Mn \sim 3.96 Cr \sim 5.22

P ~ 0.024 Mo ~ 0.42

: 2 nd Layer 55 ~ 58 HRC.

: 3 rd Layer 56 ~ 60 HRC.

คุณลักษณะเด่น 🖶 สามารถเชื่อมคมตัดบนแม่พิมพ์เหล็กหล่อได้โดยตรง

ไม่ต้องมีการรองพื้น เชื่อม 3 ชั้นจะได้ค่าความแข็งสูงถึง 58-60 HRC.

ชิ้นงาน 🖶 เชื่อมคมตัดบนแม่พิมพ์เหล็กหล่อเท่านั้น เช่น ตระกูล FC, FCD เป็นต้น

เชื่อมบนเหล็ก

➡ FC-250 , FC-300 , GM238M , FCD-500 , 600 , FCD550/550M ,

FCD-700, KSE D80015, (FCDFH), GM240M, CH-891, GM241,

NKM240, HD-700, GGG-70L, TGC-600

กระแสไฟฟ้าที่เชื่อม DC-/AC (Uo: 60 V)

DIA x LENGTH (MM.)	กระแสไฟฟ้าเชื่อม (AMP.)				
2.5 x 350	45 ~ 65				
3.2 x 350	70 ~ 90				
4.0 x 350	100 ~ 120				

Tools Steel For Cutter of Various Kinds DC 600MW

LWR-DIE (LOWER DIE)

มาตรฐานสากล	A~ ชุบแข็งโดยปล่อยให้เย็นในอากาศ (Air Hardening)								
A2 thru A10 Air Hardening Tool Steel (COLD WORK TOOL STEEL)									
Gas Tungsten Arc Welding for Hard Surfacing Shield gas Ar+10-20%CO2 Polarity DC-EP									
ส่วนผสมทางเคมี (% wt.)		$C \sim 0.44 \qquad S \sim 0.002 \qquad Ni \sim 1.0 \qquad Sn \sim 0.004$							
Chemistry		Cr ~ 3.03 Cr ~ 9.20 Al ~ 0.023							
		$Mn \sim 0.41 \qquad Mn \sim 0.020 \qquad V \sim 0.028$							
		$P \sim 0.019 \qquad Cu \sim 0.9 \qquad \qquad Ti \sim 0.005$							
คุณสมบัติทางกล	\Rightarrow	As Welded ความแข็ง (HRC.) : 1 st Layer 40 ~ 46 HRC.							
		: 2 nd Layer 51 ~ 56 HRC.							
		: 3 rd Layer 55 ~ 60 HRC.							
คุณลักษณะเด่น	\Rightarrow	เชื่อมซ่อมสร้างแม่พิมพ์ปากกรรไกร เหล็ก FLAME HARD เหล็กเหนียว, เหล็กแข็ง							
	\Rightarrow	เชื่อมชิ้นส่วนที่รับภาระแรงกระแทกและแรงอัคสูง							
	\Rightarrow	เชื่อมพอกผิวแข็งชิ้นส่วนเครื่องจักรในอุตสาหกรรมที่รับแรงกระแทก							
	\Rightarrow	เชื่อมพอกที่ใช้กับงานเสียค <mark>สี</mark> คีเลิ ศ							
ชิ้นงาน	\Rightarrow	MACHINE ให้ได้ตามขนาดค่า C กว้าง 5 MM. ถึกประมาณ 8 MM. และอุ่นชิ้นงานที่ 200C							
		เชื่อมด้วยเครื่องเชื่อม (Mag Ar +10 -20% $\mathrm{CO_2}$) (Polarity \sim De -Ep)							
		ตั้งใฟประมาณ 80 ~ 110 AMP							
		ใช้ลวคเชื่อม DC600MW ขนาค 1.2 MM. เชื่อม 2 ชั้น จำนวน 3 แถว เชื่อมสลับแนว							
		ไม่ให้รอยต่อตรงกัน เชื่อมให้เลยแนวบาก เชื่อมเสร็จแล้วแต่ละแนวเชื่อม							
		ใช้ฆ้อนทุบอัคแนวเชื่อมให้แน่นแต่ละแนว							
		ปล่อยให้เย็นตัวในอากาศ แล้ว MACHINE ให้เป็นคมตัดตามมาตราฐาน							
เชื่อมบนเหล็ก	ightharpoons	เชื่อมบนตระกูลเหล็กแข็งทุกชนิด ไม่ต้องรองพื้น							
		TGC-600,SFH 5,HMD,SX-105V,ICD5,OKS 5,GO5,GM 190/M ,KY870,HK-600A/B							
		SKD 11,WST 2336,HK-700,SKS-3,SG2,W2601,TD2,AUD11,SLD,DC53,DCMX							
	เชื่อมบนตระกูลแม่พิมพ์เหล็กหล่อทุกชนิด ควรรองพื้นด้วย DC220 หรือ DCNI99, DCW								
		FC-250,FC-300,GM238M,FCD-500,600,FCD550/550M,FCD-700,KSCD80015,							
		(FCD FH),GM240M,CH-891,GM241,NKM240,HD-700,GGG-70L,TGC-600							

DIA (MM.)	KGS.				
1.2	15				

Hard Surfacing on to Cast Iron Cold-Press Molds DC600M

มาตรฐานสากล Build -up Welded Cutter Edge

Gas Tungsten Arc Welding for Hard Surfacing Shield gas Ar+10-20%CO2 Polarity DC-EP

ส่วนผสมทางเคมี (% wt.)

C ~ 0.28

P ~ 0.006

Ni ~ 2.84

Chemistry

Si ~ 0.69

S ~ 0.009

Mo ~ 0.33

Mn ~ 3.27

Cr ~ <0.1

Fe & Orther

คุณสมบัติทางกล

🖈 As Welded ความแข็ง (HRC.)

: 1 st Layer 40 ~ 46 HRC.

: 2 nd Layer 51 ~ 56 HRC.

: 3 rd Layer 55 ~ 60 HRC.

คุณถักษณะเด่น

- 🖈 เชื่อมง่าย เวลาเชื่อมไม่สะท้านมือ ใช้เชื่อมบนแม่พิมพ์เหล็กหล่อเท่านั้น
- ➡ เป็นลวดเชื่อมฟลั๊กซ์ ใช้เชื่อมงานคมตัดโดยตรง เชื่อมคมตัดรอบตัวแม่พิมพ์เหล็กหล่อ

ชิ้นงาน

➡ MACHINE ให้ได้ตามขนาดค่า C กว้าง 5 MM. ถึกประมาณ 8 MM. และอุ่นชิ้นงานที่ 200C เชื่อมด้วยเครื่องเชื่อม (Mag Ar +10 -20% CO₂) (Polarity ~ De -Ep)

ตั้งไฟประมาณ 80 ~ 110 AMP

ใช้ลวคเชื่อม DC600M ขนาด 1.2 MM. เชื่อม 2 ชั้น จำนวน 3 แถว เชื่อมสลับแนว ไม่ให้รอยต่อตรงกันเชื่อมให้เลยแนวบาก เชื่อมเสร็จแล้วแต่ละแนวเชื่อม

ใช้ฆ้อนทุบอัคแนวเชื่อมให้แน่นแต่ละแนว

ปล่อยให้เย็นตัวในอากาศ แล้ว MACHINE ให้เป็นคมตัดตามมาตราฐาน

เชื่อมบนเหล็ก

FC-250, FC-300, GM, 238M, FCD-500, 600, FCD550/550M FCD-700, KSCD80015, (FCDFH) GM 240M, CH-891, GM241,

NKM240, HD-700, GGG-70L, TGC-600

DIA (MM.)	KGS.
1.2	12.5

Tools Steel For Cutter Edge of Various Kinds DC650

(HIGHT SPEED STEEL)

91	1	m	~	a	1	9 4	a	7	ຄ	a
ผ		γı	ď	ข		н	ส		11	ы

For Cutter Overlaying of Molds.

Coved Electrode : Basic.

ส่วนผสมทางเคมี (% wt.) C ~ 0.95 S ~ 0.003 Fe ~ Bal.

Mn \sim 0.58 Mo \sim 7.65

P ~ 0.019 W ~ 1.31

คุณลักษณะเด่น 🖶 เป็นลวดเชื่อม HIGHT SPEED ใช้ปั๊มงานหนาๆ 5 มิลลิเมตรขึ้นไป

🖈 เชื่อมง่ายแนวเชื่อมสวย แข็งและคม ทนความร้อนสูง

🖈 ใม่มีปัญหาเรื่องครีบและ PATR BARI

เชื่อมบนเหล็ก 🖙 เชื่อมบนตระกูลเหล็กแข็งทุกชนิดไม่เกิน 2 ชั้น ไม่ต้องรองพื้น

TGC-600,SFH 5,HMD,SX-105V,ICD5,OKS 5,GO5,GM 190/M ,KY870,HK-600A/B

SKD 11,WST 2336,HK-700,SKS-3,SG2,W2601,TD2,AUD11,SLD,DC53,DCMX

🖶 เชื่อมบนตระกูลเหล็กหล่อทุกชนิด ควรรองพื้นด้วย DC220 หรือ DCNI99, DCW

FC-250,FC-300,GM238M,FCD-500,600,FCD550/550M,FCD-700,KSCD80015,

(FCD FH),GM240M,CH-891,GM241,NKM240,HD-700,GGG-70L,TGC-600

กระแสไฟฟ้าที่เชื่อม

DC-/AC (Uo: 60 V)

DIA x LENGTH (MM.)	กระแสไฟฟ้าเชื่อม (AMP.)					
2.5 x 350	45 ~ 65					
3.2 x 350	70 ~ 90					
4.0 x 350	100 ~ 120					

Tools For Cutter Edge of Various Kinds DIL650

(HIGHT SPEED STEEL)

มาตรฐานสากล		For Cutter Overlaying of Molds.								
ส่วนผสมทางเคมี (% wt.)		C	~	0.90	S	~	0.007	V	~	1.78
Chemistry		Si	7	0.29	Cr	2	4.02	Fe	~	Bal.
		Mn	~	0.30	Mo	2	4.89			
		P	1	0.016	W	~	5.89			
คุณสมบัติทางกล	ightharpoons	As V	Velde	ed : 61~6	3 HRC	C.				
						end				y.
คุณลักษณะเด่น	\Longrightarrow	เป็นลวดเชื่อม Hight Speed ใช้ปั๊มงานหนาๆ 5 มิลลิเมตรขึ้นไป								
	เชื่อม	เชื่อมง่ายแนวเชื่อมสวย แข็งและคม ทนความร้อนสูง								
	ไม่มีปัญหาเรื่อง คริบและ Part Bari									
เชื่อมบนเหล็ก	\Longrightarrow	เชื่อม	บบนต	าระกูลเหล็ก	แข็งทุ	กชนิด	าไม่เกิน 3 ชั้า	น ไม่ต้า	องรอ	งพื้น
		TGC	C-600,	SFH 5,HM	D,SX-	-105V	,ICD5,OKS	5,GO:	5,GM	190/M ,KY870,HK-600A/B
		SKI) 11,V	VST 2336,I	HK-70	0,SKS	S-3,SG2,W2	601,TI	02,A	UD11,SLD,DC53,DCMX
	\Longrightarrow	18								20 หรือ DCNI99, DCW
	50									
		FC-250,FC-300,GM238M,FCD-500,600,FCD550/550M,FCD-700,KSCD80015,								
		(FC	D FH)),GM240M	,CH-89	91,GN	и241,NKM2	240,HI) -700),GGG-70L,TGC-600

กระแสไฟฟ้าที่เชื่อม

DIA x LENGTH (mm.)	Shield Gas
1.6 x 1000	Oxyfuel Gas or Argon
2.0 x 1000	Oxyfuel Gas or Argon
2.4 x 1000	Oxyfuel Gas or Argon

Tools Steel For Cutter of Various Kinds DC55

มาตรฐานสากล	l
-------------	---

For Cutter Overlaying of Molds.

	_		
			
ส่วนผสมทางเคมี (% wt.)		C ~ 0.67	Mo ~ 0.75
Chemistry		Cr ~ 6.67	V ~ 0.62
		Mn ~ 0.28	S ~ 0.006
		Si ~ 0.54	Special Element.
คุณสมบัติทางกล	\Longrightarrow	ความแข็ง HRC. : 55~6	0
คุณลักษณะเด่น	\Rightarrow	ซ่อมเสริม ส่วนที่เป็นคมตัดของแม	มพิมพ์ปั้ มที่ผ่านการชุบแข็งมาแล้ ว
	ightharpoons	เชื่อม แล้วนำไปชุบแข็ง FULL HA	ARD
	\Longrightarrow	เชื่อมเติมผิวที่เกิดจากรอยครูดลึกา	หรือเป็นรอยแตกร้าว
ชิ้นงาน	\Rightarrow	Surfacing of dies, Punches, She	ear, Valve seat, Molds, Valve seats,
		Crushers , Hammer edges , Cuttin	ng knives and blowers
		Hard surfacing of sleeves of h	igh pressure pump, Cutting knives
เชื่อมบนเหล็ก	\Rightarrow	เชื่อมบนตระกูลเหล็กแข็งทุกชนิด	ไม่เกิน 3 ชั้น ไม่ต้องรองพื้น
		TGC-600,SFH 5,HMD,SX-105V,	ICD5,OKS 5,GO5,GM 190/M ,KY870,HK-600A/B
		SKD 11,WST 2336,HK-700,SKS	-3,SG2,W2601,TD2,AUD11,SLD,DC53,DCMX

กระแสไฟฟ้าที่เชื่อม

DC-/AC (Uo: 60 V)

DIA x LENGTH (mm.)	กระแสไฟฟ้าเชื่อม (Amp)
2.5 x 350	45 ~ 65
3.2 x 350	70 ~ 90
4.0 x 350	100 ~ 120

Tools Steel For Cutter of Various Kinds DIL55

มาตรฐานสากล		For Cutter Overlaying of Molds.			
ส่วนผสมทางเคมี (% wt.)	(C ~ 0.38	Mo ~ 1.20		
Chemistry		Cr ~ 6.20	V ~ 1.10		
		Mn ~ 0.45	S ~ 0.008		
		Si ~ 0.98	Special Element.		
คุณสมบัติทางกล	₽	ความแข็ง HRC. : 55~6	0		
คุณลักษณะเด่น	\Longrightarrow	ซ่อมเสริม ส่วนที่เป็นคมตัดของแม	มพิมพ์ปั๊มที่ผ่านการช ุบแข็งมาแล้ ว		
	\Longrightarrow	เชื่อม แล้วนำไปชุบแข็ง FULL HA	ARD THE TOTAL PROPERTY OF THE TOTAL PROPERTY		
	\Longrightarrow	เชื่อมเติมผิวที่เกิดจากรอยครูคลึกห	เรือเป็นรอยแตกร้าว		
ชิ้นงาน	\Longrightarrow	Surfacing of dies, Punches, She	ear, Valve seat, Molds, Valve seats,		
		Crushers, Hammer edges, Cuttin	ng knives and blowers		
		Hard surfacing of sleeves of h	igh pressure pump, Cutting knives		
เชื่อมบนเหล็ก	\Rightarrow	เชื่อมบนตระกูลเหล็กแข็งทุกชนิด	ไม่เกิน 3 ชั้น ไม่ต้องรองพื้น		
		TGC-600,SFH 5,HMD,SX-105V,	ICD5,OKS 5,GO5,GM 190/M ,KY870,HK-600A/B		

กระแสไฟฟ้าที่เชื่อม

DIA x LENGTH (mm.)	Shield Gas
1.6 x 1000	Oxyfuel Gas or Argon
2.0 x 1000	Oxyfuel Gas or Argon
2.4 x 1000	Oxyfuel Gas or Argon

SKD 11,WST 2336,HK-700,SKS-3,SG2,W2601,TD2,AUD11,SLD,DC53,DCMX

Tools Steel For Cutter Edge of Various Kinds DC520

มาตรฐานสากล

For Cutter Overlaying of Molds.

Coved Electrode

: Basic.

ส่วนผสมทางเคมี (% wt.)

C ~ 0.35

S ~ 0.003

Chemistry

Si ~ 0.42

Co ~ 3.64

Mn ~ 3.90

Fc & Orthre Balance.

P ~ 0.018

คุณสมบัติทางกล

🖈 เชื่อม 1 ชั้น ค่าความแข็ง 35 ~ 40 HRC.

เชื่อม 2 ชั้น ค่าความแข็ง 42 ~ 53 HRC.

เชื่อม 3 ชั้น ค่าความแข็ง 49 ~ 56 HRC.

คุณลักษณะเด่น

■ ใช้เชื่อมแม่พิมพ์เหล็กหล่อโดยไม่ต้องรองพื้น

🖈 ใช้เชื่อมแม่พิมพ์ตระกูลเหล็กแข็ง เหล็ก FLAME HARD

🖈 เชื่อมง่ายแนวเชื่อมสวย สามารถเลือกใช้ค่าความแข็งที่ต้องการได้

🖈 ใม่มีปัญหาเรื่องครีบและ PART BARI

เชื่อมบนเหล็ก

TGC-600,SFH 5,HMD,SX-105V,ICD5,OKS 5,GO5,GM 190/M ,KY870,HK-600A/B

SKD 11,WST 2336,HK-700,SKS-3,SG2,W2601,TD2,AUD11,SLD,DC53,DCMX

FC-250,FC-300,GM238M,FCD-500,600,FCD550/550M,FCD-700,KSCD80015,

(FCD FH),GM240M,CH-891,GM241,NKM240,HD-700,GGG-70L,TGC-600

กระแสไฟฟ้าที่เชื่อม

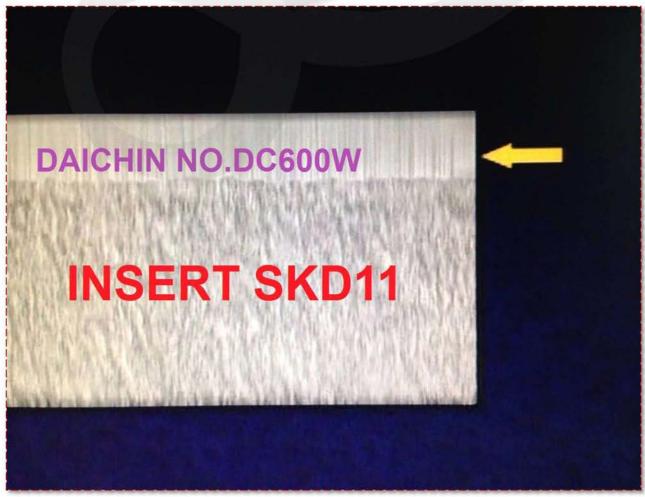
DC-/AC (Uo: 60 V)

DIA x LENGTH (MM.)	SHIELD GAS
2.5 x 350	45 ~ 65
3.2 x 350	70 ~ 90
4.0 x 350	100 ~ 120

Tools Steel For Cutter Edge of Various Kinds DIL520

มาตรฐานสากล

For Cutter Overlaying of Molds.


		0					
ส่วนผสมทางเคมี (% wt.)		C	~	0.083	S	~	0.003
Chemistry		Si	~	0.09	Co	~	3.60
		Mn	~	6.33	Fc	&	Orthre Balance.
		P	~	0.010			
คุณสมบัติทางกล	\Longrightarrow	เชื่อม	1 ชั้น ค	ก่าความแข็ง 35 ~	40 HRC.		
		เชื่อม :	2 ชั้น ค	ก่าความแข็ง 42 ~	53 HRC.		
		เชื่อม :	3 ชั้น ค	ก่าความแข็ง 49 ~	56 HRC.		
คุณลักษณะเด่น	\Longrightarrow	ใช้เชื่อ	มแม่ท็	เมพ์เหล็กหล่อโคย	ไม่ต้องรอง	พื้น	
	\Longrightarrow	ใช้เชื่อ	มแม่ทิ	โมพ์ตระกูลเหล็กแ	ขึ้ง เหล็ก F	ram l	Hard
	\Rightarrow	เชื่อมง่	่ายแน	วเชื่อมสว <mark>ย สา</mark> มาร	ถเลือกใช้ค่	าควา	มแข็งที่ต้องการได้
	\Longrightarrow	ไม่มีป	ัญหาเร็	รื่องคริบและ Part	Bari.		
เชื่อมบนเหล็ก	\Longrightarrow	TGC-	600,SI	FH 5,HMD,SX-10	5V,ICD5,C)KS	5,GO5,GM 190/M ,KY870,HK-600A/B
		SKD	11,WS	T 2336,HK-700,S	KS-3,SG2,	,W26	01,TD2,AUD11,SLD,DC53,DCMX
		FC-25	0,FC-	300,GM238M,FC	D-500,600,	,FCD	550/550M,FCD-700,KSCD80015,
		(FCD	FH),G	GM240M,CH-891,	GM241,NI	KM2	40,HD-700,GGG-70L,TGC-600

กระแสไฟฟ้าที่เชื่อม

DIA x LENGTH (mm.)	Shield Gas
1.6 x 1000	Oxyfuel Gas or Argon
2.0 x 1000	Oxyfuel Gas or Argon
2.4 x 1000	Oxyfuel Gas or Argon



FORGING MOLDS AND DIES DC66

UPR-DIE (UPPER DIE)

มาตรฐานสากล

For Cutter Overlaying of Molds.

Hard Surfacing and Build Welded Cutter Edge of -Up Various Kinds of CastIron Mold and Cold-Press Mold.

ส่วนผสมทางเคมี (% wt.)	C ~ 0.02	5 Ni ~	17.84
Chemistry	Mn ~ 0.42	Ti ~	0.12
	Si ~ 0.20	Al ~	0.24
	Mo ~ 4.88	Other ~	Special Element
คุณสมบัติทางกล 🖙	ความแข็ง HRC	. : 40 ~ 50	

คุณถักษณะเด่น	\Longrightarrow	ลวดเชื่อมไฟฟ้า ทนความ	ร้อนสูง ทนการเสียคสีและ	ะแรงกระแทก ใช้ในงานคร	มตัดต่างๆ

🖈 🛮 เหมาะสำหรับงานซ่อม PIERCE DIE

🖈 ซ่อมแม่พิมพ์ปั๊มร้อนทนแรงกระแทกได้ดี มีความคมและเหนียวสูง

ชิ้นงาน	\Rightarrow	Forging dies, Press dies, Hot shear Blade, Extrusion rams etc
		Valve seats, Crushers, Hammer Edges, Cutting knives and blowers

เชื่อมบนเหล็ก	\Rightarrow	TGC-600,SFH 5,HMD,SX-105V,ICD5,OKS 5,GO5,GM 190/M ,KY870,HK-600A/B
		SKD 11,WST 2336,HK-700,SKS-3,SG2,W2601,TD2,AUD11,SLD,DC53,DCMX
		FC-250,FC-300,GM238M,FCD-500,600,FCD550/550M,FCD-700,KSCD80015,
		(FCD FH),GM240M,CH-891,GM241,NKM240,HD-700,GGG-70L,TGC-600

กระแสไฟฟ้าที่เชื่อม

DC-/AC (Uo: 60 V)

DIA x LENGTH (MM.)	กระแสไฟฟ้าเชื่อม (AMP.)
2.5 x 350	45 ~ 65
3.2 x 350	70 ~ 90
4.0 x 350	100 ~ 120

FORGING MOLDS AND DIES DIL66

UPR-DIE (UPPER DIE)

1000000	remere series		
917	ตรส	านสา	ากล
94 I	riou	100	11161

For Cutter Overlaying of Molds.

មា សេចគឺ កេតុ ពេត		For Cutter Overlaying of Molds.	
ส่วนผสมทางเคมี (% wt.) Chemistry)	$C \sim 0.013$ $Mn \sim 0.07$ $Si \sim 0.08$ $Mo \sim 4.9$	Ni \sim 18.31 Ti \sim 0.59 Al \sim 0.14 Other \sim Special Element
คุณสมบัติทางกล	\Rightarrow	ความแข็ง HRC. : 40 ~ 50	
คุณลักษณะเด่น	\Longrightarrow	ลวค TIG Argon ทนความร้อนสูงท	นการเสียคสีและแรงกระแทก ใช้ในงานคมตัดต่างๆ
	\Longrightarrow	เหมาะสำหรับงานซ่อม PIERCE DI	ECHIDO DE
	\Rightarrow	ซ่อมแม่พิมพ์ ปั๊มร้อนทนแรงกระแท	ากได้ดี มีความคมและเหนียวสูง
ชิ้นงาน	₽	Forging dies, Press dies, Hot sh Valve seats, Crushers, Hammer 1	ear Blade, Extrusion rams etc Edges, Cutting knives and blowers
เชื่อมบนเหล็ก	\Longrightarrow	TGC-600,SFH 5,HMD,SX-105V,I	CD5,OKS 5,GO5,GM 190/M ,KY870,HK-600A/B
		SKD 11,WST 2336,HK-700,SKS-3	3,SG2,W2601,TD2,AUD11,SLD,DC53,DCMX
		FC-250,FC-300,GM238M,FCD-50	0,600,FCD550/550M,FCD-700,KSCD80015,
		(FCD FH),GM240M,CH-891,GM2	41,NKM240,HD-700,GGG-70L,TGC-600

กระแสไฟฟ้าที่เชื่อม

DIA x LENGTH (mm.)	Shield Gas
1.6 x 1000	Oxyfuel Gas or Argon
2.0 x 1000	Oxyfuel Gas or Argon
2.4 x 1000	Oxyfuel Gas or Argon

เทคนิคการปรับแต่ง รู PI/PUNCH ที่เกิดปัญหา PART BARI

<u>ปัญหาที่พบ</u>

1. PART เป็นคริบต้องทำการเจียรครีบทำให้เสียเวลาในการทำงาน

<u>สาเหตุเกิดจาก</u>

- 1. BOTTOM DIE สึกหรอ
- 2. PUNCH สึกหรอ

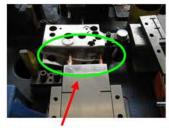
วิธีการตรวจสอบ CHECK BOTTOM DIE / PUNCH

- 1. CHECK PI/PUNCH ว่ามีการสึกหรอตรงด้านใดบ้าง
- 2. ถ้ามีการสึกหรอกี่ทำการเปลี่ยน หรือทำการพ่อมบำรุง
- 3. ถ้าไม่สามารถทำการเปลี่ยนได้ให้ทำการเชื่อมแล้วทำการเจียรปรับแต่ง

วิธีการซ่อมบำรุงปรับแต่ง PI/PUNCH

- 1. เชื่อมรู PI ตรงบริเวณที่มีการสึกหรอด้วยลวดเชื่อม DAICHIN ARC, FLAME, TIG~FLAME
- 2. เจียรปรับให้ใกล้เคียงกับค่า STD เดิม
- 3. ใช้สี LAY / OUT พ่นตรงบริเวณที่ทำการเชื่อม
- 4. นำ PUNCH ที่มีขนาดเท่ากับรูทาบตรงบริเวณแนวเชื่อมแล้วใช้เหล็กขีดแนวที่จะทำการเจียร ปรับแต่งรู BOTTOM DIE
 - 5. ใช้อุปกรณ์ในการเจียรปรับแต่งรู PI ทำการเจียรปรับแต่ง
 - 6. ใช้สีเสนทา ที่ตรงบริเวณปลาย PUNCH ทำการเช็คค่าระยะห่าง
 - 7. ถ้าเกิดรอยเบียดตรงด้านใหน ให้ทำการเจียรปรับแต่งให้ได้ตามค่า STD เดิม

ประโยชน์ที่ได้รับ


- 1. ลดปัญหาการรอใช้เครื่อง DIE SPOTS ทำให้การทำงานไม่ติดขัด
- 2. ทำให้การทำงานมีความรวดเร็วไม่เกิดปัญหาในทาง LINE ผลิต
- 3. ทำให้ง่ายต่อการทำงานและมีความสะควกรวดเร็ว

การเชื่อมรู PI ที่สึกหรอ

เจียรปรับแต่งให้ได้ค่า STD

CHECK SPOT AWASE

Tools Steel of Cutter Edge Flame Hard and Pierce Die

มาตรฐานสากล

For Cutter Flame Hard and Pierce Die.

ส่วนผสมทางเคมี (% wt.)

C ~ 1.0

 $S \sim 0.03$

V ~ 1.10

Chemistry

Mn ~ >6.60

Cr ~ 12.00

Special Element.

Si ~ >6.60

Mo ~ 0.94

P ~ 0.03

Co ~ >1.00

คุณสมบัติทางกล

As Welded : 38 ~ 42 HRC.

 \Rightarrow

Flame Hard: 55 ~ 58 HRC.

คุณลักษณะเด่น

⇒ 🛮 เป็นลวดเชื่อมที่สามารถใช้การเพิ่มความแข็งโดยการ FLAME HARD ด้วยแก๊ส

 \Rightarrow

การปรับแต่งสามารถทำได้ง่าย โดยการใช้เจียรแต่ง ก่อนจะใช้แก๊สเป่าทำให้แข็ง

 \Rightarrow

การเชื่อมเพื่อทำเป็นคมตัดบนแม่พิมพ์เหล็กแข็ง กระทำ ได้เช่นกัน โดยการปรับ

แต่งแนวคมตัดตามต้องการ แล้วจึงใช้แก๊สเป่าแนวเชื่อม

เชื่อมบนเหล็ก

 \Rightarrow

TGC - 600, SFH5, HMD, SX - 105U, ICD5, OKS5, GO5, GM190/M, KY870, HK - 600 A/B, SKD11, WST2336, HK - 700, SKS - 3, SG2, W2601, TD2, AUD11,

SLD, DC53, DCMX

กระแสไฟฟ้าที่เชื่อม (TIG ARGON)

DIA x LENGTH (MM.)	SHIELD GAS
1.6 x 1000	Oxyfuel Gas or Argon
2.0 x 1000	Oxyfuel Gas or Argon
2.4 x 1000	Oxyfuel Gas or Argon

กระแสไฟฟ้าที่เชื่อม


DC-/AC (Uo: 60 V)

(ARC)

DIA x LENGTH (MM.)	กระแสไฟฟ้าเชื่อม (AMP.)
2.5 x 350	45 ~ 65
3.2 x 350	70 ~ 90
4.0 x 350	100 ~ 120

ปั๊มรู PIERCE DIE DAICHIN FLAME HARD <ARC,TIG>

การใช้ลวดเชื่อมทองเหลือง DIL 11-12ใน INSERT SKD11 ชุบ TIC

สาเหตุของปัญหา

1. INSERT ที่ผ่านการชุบ TIC หรือ TD มาเมื่อเกิดปัญหาเป็นรอยครูดลึกหรือเป็นรอย แตกร้าวของ INSERT ซึ่งส่งผลกระทบกับชิ้นงานเวลาขึ้นรูปและทำให้เป็นรอยครูดลึกดึง ชิ้นงานแตกในการซ่อมงานเร่งค่วนกับการแก้ไขปัญหาหน้างานมี 2 แบบอย่างคือ

ขั้นตอนการแก้ไข แบบชั่วคราว

- 1. นำก้อน INSERT ที่เป็นรอยครูคลึกหรือแตกร้าวมาอบผิวโดยใช้ไฟแก๊สเผาให้อุ่นทั้งก้อนเพื่อไล่ความ ตึงเครียดและไล่ความชื้นเจียรบากร่องให้ลึกประมาณ 5~7 MM.
- 2. ปรับกระแสไฟจาก DC เปลี่ยน AC ปรับความแรงของไฟ 100 ~ 120 AMP.(แอมแปร์)ปรับแก๊สอาร์กอนที่ ความคันเกจ 5 BAR
- 3. นำลวดเชื่อมทองเหลือง CODE. DIL11-12 เชื่อมตรงบริเวณที่เจียรบากล่องให้เต็มและการเชื่อมลากประมาณ
 2 นิ้วและหยุด แล้วเชื่อมต่อใหม่เพื่อลดแรงดึงของกระแสไฟ
- 4. นำไปอบคลายผิวในกากเคมีหรือกากทองเหลืองที่มีส่วนผสมของ Carbon ให้เย็นตัวลงและนำไปเจียร ให้เข้ารูปตามเดิม

เชื่อมเจียรแต่ง OK

<u>คุณสมบัติของลวดเชื่อมทองเหลือง DIL 11 - 12</u>

- 1. สามารถลดแรงคึงของกระแสไฟไม่ให้ชิ้นงานบิดและร้าวในเวลาเชื่อมและเย็นตัวลงแนวเชื่อมจะไหลผ่าน ลงตามบริเวณที่แตกร้าวและประสานยึดตัว
- มีความแข็งเหนียวและลิ่น เมื่อมีการสัมผัสเสียดสีขณะ UPR&LWR DIE ทำการขึ้นรูปจะเกิดความร้อน ทำให้ทองเหลืองมีความแข็งเพิ่มมากขึ้นประมาณ 52 ~ 56 HRC.

ขั้นตอนการแก้ไข แบบถาวร

คือ เจียรทองเหลืองที่เชื่อมออกและนำลวคเชื่อม DS 61G มาเชื่อมแทนและปรับกระแสไฟจาก AC เป็น DC กระแสไฟปรับลง 50 ~ 80 AMP.

การเตรียมการเชื่อม ทำคล้ายกับขั้นตอนเบื้องต้นตามรายละเอียดข้อ 1-4

การใช้ก้อน INSERT ทองแดง-ลวดเชื่อม DIL 11-12 ทำเป็น INSERT

วิธีการทำก้อน INSERT DOKOKIN S0330 <SANKYO>

- 1.1 นำก้อนทองแคงที่มีขนาคที่ต้องการเพื่อที่จะทำก้อน INSERT
- 1.2 ใช้ไฟที่อุณหภูมิ 400 C° เผาที่ก้อน INSERT
- 1.3 ใช้ลวคเชื่อม DIL11-12 ทำการเชื่อมโรยหน้า
- 1.4 ใช้ไฟที่อุณหภูมิ 400 C° เผาบริเวณก้อน INSERT อีกครั้งก่อนนำไปอบที่กากทองเหลืองเพื่อทำการ ลดอุณหภูมิก่อนนำไปใช้งาน
- 1.5 น้ำก้อน INSERT ไป M/C ตามต้องการ

การฝัง INSERT ทองเหลืองในแม่พิมพ์แทนเหล็กหล่อ FC300 (CODE SANKYO) SO330

วีซีการทำก้อน INSERT DOKOKIN

- 2.1 DIE ที่มีปัญหาชิ้นงานเป็นรอย
- 2.2 นำ DIE M/C ในจุดที่เกิดปัญหา
- 2.3 นำ INSERT DOKOKIN ฝั่งลงในจุดที่ M/C
- 2.4 M/C INSERT DOKOKIN SO330 ตามแนวเดิม
- 2.5 CHECK SPORT TRY OUT

INSERT DOKOKIN (ลักษณะพิเศษ)

- 1. สามารถเชื่อม DIL11-12 ได้เมื่อเกิดการยุบตัว
- 2. ไม่ต้องชุบแข็งหรือ TIC
- 3. ผิวจะลื่นและแข็งตัวเมื่อเกิดการเสียดสี
- 4. ลคปัญหารอยครูค
- 5. ยากต่อการแตกร้าว

ก้อน INSERT ทองเหลือง

การฝังก้อน INSERT ทองเหลืองลงใน DIE

HardFacing of Galling of Drawing Molds and Die DIL11,12

(PRESS DIE)

ส่วนผสมทางเคมี (% wt.)	Cu ~	Balance	A1 ~	15
Chemistry	Mn ~	0.5	Fe ~	20
	Si ~	0.4	Ni ~	1.5
	Mo ~	0.15	Other ~	Special Element

คุณลักษณะเด่น 🖶 ลวดเชื่อมอาร์กอน งานซ่อม PRESS DIE พอกแข็งบนผิวแม่พิมพ์ที่มีรอยแตกร้าว

🖈 สีผิวของแนวเชื่อมคล้ายคลึงเนื้อเชื่อมทองเหลือง แต่มีความแข็งแรงและเหนียว

➡ แนวเชื่อมจะใหลไปตามรอยแตกร้าวเพื่อปร<mark>ะสาน</mark>รอยร้าว<mark>สาม</mark>ารถนำไปปั้มงานได้

Surfacing of Dies, Punches, Shear, Valve Seat, Molds, Valve Seats,

Crushers, Hammer Edges, Cutting Knives and Blowers

Hard Surfacing of Sleeves of High Pressure Pump, Cutting Knives

raid Surating of Siceres of Fight Fressure Fully, Cutting Kinves

รี่อมบนเหล็ก

□ TGC-600,SFH 5,HMD,SX-105V,ICD5,OKS 5,GO5,GM 190/M ,KY870,HK-600A/B

SKD11,WST 2336,HK-700,SKS-3,SG2,W2601,TD2,AUD11,SLD,DC53,DCMX

FC-250,FC-300,GM238M,FCD-500,600,FCD550/550M,FCD-700,KSCD80015,

(FCD FH),GM240M,CH-891,GM241,NKM240,HD-700,GGG-70L,TGC-600

กระแสไฟฟ้าที่เชื่อม

DIA x LENGTH (MM.)	SHIELD GAS
1.6 x 1000	Oxyfuel Gas or Argon
2.4 x 1000	Oxyfuel Gas or Argon
32 x 1000	Oxyfuel Gas or Argon

เรื่อง การอบชุบ INSERT SKD 11, DC 53 ในการ MAINTENANCE

การอบชุบ INSERT SKD 11 , DC53 ในการ MAINTENANCE

<u>ปัญหาที่เกิด</u>

INSERT SKD 11 หรือ INSERT DC53 เป็นเกรดเหล็กชนิดคล้ายกันจะมีส่วนผสมต่างกันนิดหน่อยแล้ว แต่ละบริษัทเกรดเหล็กชนิดนี้มีความเหนียวแข็งและเปราะสำหรับใช้ทำคมตัด CUTTER INSERT การขึ้น รูปที่สูงและใช้แรงเสียดทานมาก INSERT ชนิดนี้สามารถ TIC, TD, HARD CHROME ได้หรือใช้ FLAME HARD ที่ชุบอบกากทองเหลือง, น้ำมัน, น้ำ, หรืออากาศได้

ขั้นตอนที่ 2

ขั้นตอนที่ 3

ขั้นตอนที่ 4

ขั้นตอนที่ 5

การแก้ไข

INSERT ที่ชุบ TIC & TD จะมีอายุการใช้งานตามวาระกำหนดของการใช้งานซึ่งทำให้ก้อน INSERT ที่ทำการชุบ TIC & TD มีการลอกหรือเป็นรอยครูดลึก จึงจำเป็นต้องทำการแก้ไขโดยการเชื่อมใหม่หรือทำก้อน INSERT ใหม่ขึ้นมา

วิธีการแก้ไข

- 1. นำ INSERT มาทำความสะอาด เอา GAS ลนไล่ความชื้นหรือคราบน้ำมันออกมาจากก้อน INSERT
- 2. นำ INSERT เจียรบากให้ลึกพอประมาณหรือกว้าง 10 MM.
- 3. ใช้ถวดเชื่อม DS61G เชื่อมพอก INSERT ให้เด็มแล้วนำ INSERT ถงไปอบในกากทองเหลืองหรือจะเป็น ทรายก็ได้เพื่อจะทำให้ INSERT เย็นตัวถดการตึงเครียดของก้อน INSERT ได้และยังสามารถป้องกันก้อน INSERT แตกร้าวได้
- 4. ถ้ากรณีเป็นรอยแตกร้าว แผลมีขนาดใหญ่ให้ทำการเจียรบากให้ลึกและกว้างมากกว่าเดิมประมาณ 15 MM.
- 5. แล้วนำ INSERT มาเชื่อมพอกโคยใช้ลวดเชื่อม DS61G เชื่อมพอก 2-3 แนว อย่าพึ่งเชื่อมให้เต็มเพราะกัน INSERT จะแตกก่อน แล้วนำไปอบด้วยกากทองเหลืองให้เกิดการเย็นตัว
- 6. แล้วนำมาเชื่อมใหม่ให้เต็มแล้วค่อยเอาไปทำการอบชุบใหม่อีกครั้งด้วยกากทองเหลือง รอจนก้อน INSERT เย็นตัว
- 7. แล้วนำมาเจียรแต่งให้ได้ขนาดและสภาพของก้อน INSERT เดิมจึงนำไปชุบเพื่อความแข็ง , ความเหนียว และลื่นด้วยการชุบ TIC & TD ได้

เรื่องการแก้ไขปัญหา INSERT TIC SCRATCH

วิธีและขั้นตอนการแก้ไขปัญหา INSERT DIE เป็นรอย SCRATCH

ขั้นตอนที่ 1. การเตรียมชิ้นงาน

<u>ขั้นตอนที่ 1</u>. ถอด INSERT DIE ตรงบริเวณที่เป็นรอย SCRATCH ออกมาเตรียมในช่วงระหว่างขั้นตอนทำ STOCK PART โดยการแก้ไขแบบวิธีชั่วคราวโดยการเจียรบากร่องตรงบริเวณที่ INSERT เป็นรอยออกและบากเปิดปาก เป็น TAPER กว้าง 10 MM. และลึก 10 MM.

ขั้นตอนที่ 5.

ขั้นตอนที่ 2. ใช้ GAS เผาอบก้อน INSERT ให้ได้ใออุ่นประมาณ 400 C° และใช้ลวดเชื่อมทองเหลือง CODE: DIL11 เชื่อมตรงบริเวณที่เจียรบากร่องให้เต็ม ขั้นตอนที่3. ให้นำ INSERT ไปอบในกากทองเหลืองที่เตรียมไว้ใน BOX เพื่อให้ INSERT คลายความเครียดโดยผ่านกากทองเหลืองรอจนให้ INSERT เย็น ตัวลง ประมาณการอบ 1 ชั่วโมง

<u>ขั้นตอนที่ 4.</u> นำ INSERT มาเจียรแต่ให้เข้ารูปเดิมขัดให้เงา, มัน โดยขั้นตอนตั้งแต่ หินขัด, ผ้าทราย, กระดาษ ทรายลงตามเบอร์และนำเข้าไปประกอบขึ้น TRY-OUT คุณสมบัติของทองเหลืองถ้ามีการเสียดสีและโดนความร้อน ก็จะเกิดการแข็งตัว , เหนียว , ลื่น

ขั้นตอนที่ 5. ให้เจียรเอาทองเหลืองที่เชื่อมพอกออกให้หมดและแก๊สเผาอบไล่ความชื้นออกและใช้ลวด DS 61G เชื่อมพอกตรงแนวที่เตรียมไว้แล้วนำไปอบในกากทองเหลืองที่เตรียมไว้ใน BOX เพื่อคลายความตึงเครียดป้องกันการ แตกร้าวของก้อน INSERT เมื่อ INSERT เย็นตัวก็นำออกมาเจียรปรับแต่งให้เข้ารูปตามเดิมและสามารถนำไปชุบ TIC หรือ TD COATING,HARD CHROME ก็ชุบได้สามารถยึดอายุการใช้งานของก้อน INSERT และลดเวลาในการซ่อม แซมแม่พิมพ์ และ การ H/W PART ที่เป็นรอยได้

การแก้ใง INSERT ชุบ TIC แบบถาวร

นำ INSERT ก้อนที่เชื่อมนำไปผลิตและนำ PART ไป CHECK DATA ค่า STD ตามที่ QC กำหนดเมื่อ

DATA "OK "ก็นำ INSERT ที่เชื่อมพอกแก้ไข OK แล้วนำไป SCAN COPY M/C ใหม่และนำมา TRY - OUT

ถ้า TRY - OUT "OK" ก็นำไปชุบ TIC หรือ TD COATING ซึ่งเป็นการแก้ไขแบบถาวร

Tic Coating ~TD Treatment and Hardening DCR-61 SB

มาตรฐานสากล

Blanking die, Cold Trimming dies, Drewing dies, Punches, Forming dies, Thread rolling Dies.

ส่วนผสมทางเคมี (% wt.)

C~, Mn~, Cr~, Si~, Eutectic Special Element & orthers Balance

Covered Electrode

Lime Titania (ฟลั๊กซ์หุ้มลวคเชื่อมชนิคนี้ใช้งานง่ายมากการอาร์คกึ่ง่ายมาก)

เนื้อโฉหะรอยเชื่อม

โครงสร้างจุลภาค

- มาร์เทนซิติก

ความแข็ง (HRC.)

58 ~ 61

Quenching Temp

⇒ 1,000 ~ 1,050 C°

Oil / Air Cooling

Annealing Temp

⇒ 830 ~ 880 C°

Furnace Cooling

Tempering Temp

 \Rightarrow 150 ~ 200 °C

Air Cooling

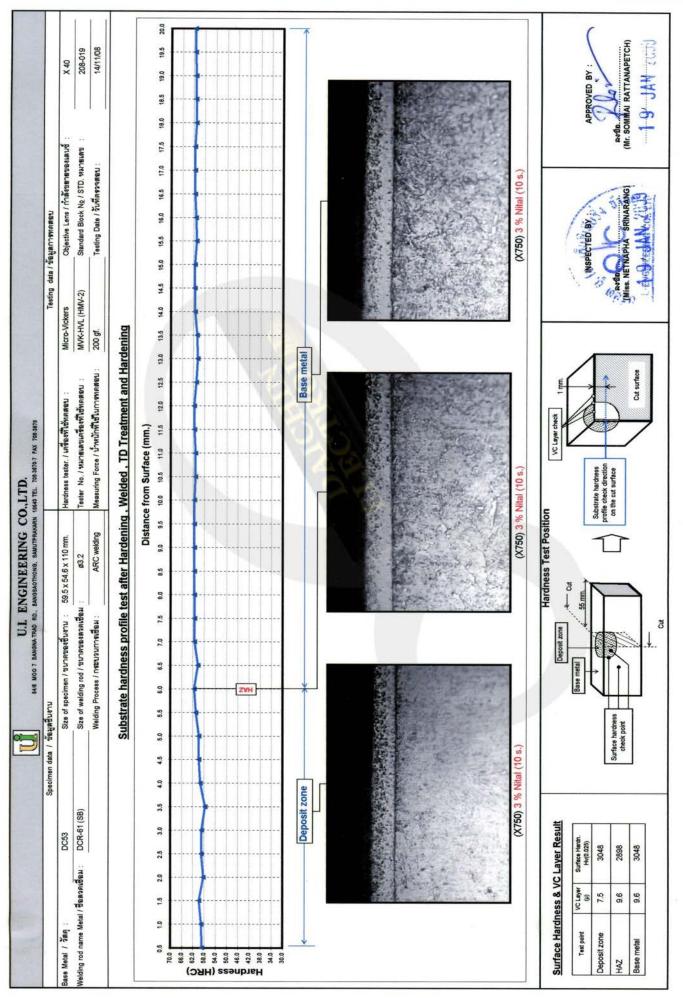
เชื่อมบนเหล็ก

TGC-600,SFH 5,HMD,SX-105V,ICD5,OKS 5,GO5,GM 190/M ,KY870,HK-600A/B SKD 11,WST 2336,HK-700,SKS-3,SG2,W2601,TD2,AUD11,SLD,DC53,DCMX

กระแสไฟฟ้าที่เชื่อม

DC-/AC (Uo: 60 V)

DIA x LENGTH (MM.)	กระแสไฟฟ้าเชื่อม (AMP.)
2.5 x 350	45 ~ 65
3.2 x 350	70 ~ 90
4.0 x 350	100 ~ 120


คุณลักษณะเด่น

Designed for cold working dies, such as SKD11 (JIS), SDK61(JIS) Building up forged metal molds punch die, dies. Recommended for overlaying and building upedges where post-weld heat treatment is required. Typical applications are blanking dies, gauges cold trimming dies, plastic mold, drawing dies, punches, slitters, forming dies and thread rolling dies. Hardness will increase to HRC58-60 BY heat treatment. Responds to typical SKD11 alloy heat treatment with excellent color-match.

Surface Hardness & vc Layer Result

Test point	VC Layer (μ)	Surface Hardn. Hv(0.025)	
Deposit Zone	7.5		
HAZ	9.6	2898	
Base metal	9.6	3048	

TEST TD COATING

TEST TIC COATING

Tic Coating ~TD Treatment and Hardening DS61G

มาตรฐานสากล

Blanking die, Cold Trimming dies, Drewing dies, Punches, Forming dies, Thread rolling Dies.

ส่วนผสมทางเคมี (% wt.)

C~, Mn~, Cr~, Si~, Eutectic Special Element & orthers Balance.

เนื้อโลหะรอยเชื่อม

🖈 ความแข็ง (HRC.)

58 ~ 61

Quenching Temp

□ 1,000 ~ 1,050 °C

Oil / Air Cooling

Annealing Temp

⇒ 830 ~ 880 C°

Furnace Cooling

Tempering Temp

⇒ 150 ~ 200 °C

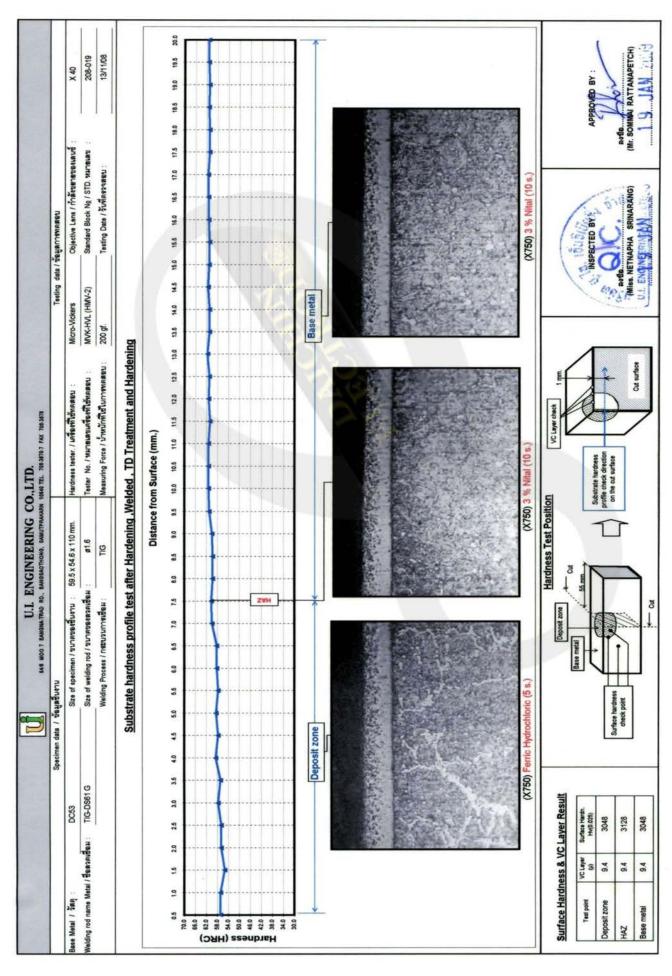
Air Cooling

เชื่อมบนเหล็ก

TGC-600,SFH 5,HMD,SX-105V,ICD5,OKS 5,GO5,GM 190/M ,KY870,HK-600A/B SKD 11,WST 2336,HK-700,SKS-3,SG2,W2601,TD2,AUD11,SLD,DC53,DCMX

กระแสไฟฟ้าที่เชื่อม

SHIELD GAS
Oxyfuel Gas or Argon
Oxyfuel Gas or Argon


คุณถักษณะเด่น

Designed for cold working dies, such as SKD11 (JIS), SDK61(JIS) Building up forged metal molds punch die, dies. Recommended for overlaying and building upedges where post-weld heat treatment is required. Typical applications are blanking dies, gauges cold trimmer dies, plastic mold, drawing dies, punches, slitters, forming dies and thread rolling dies. Hardness will increase to HRC58-60 BY heat treatment. Responds to typical SKD 11 alloy heat treatment with excellent color-match.

Surface Hardness & vc Layer Result

Test point	VC Layer (μ)	Surface Hardn. Hv(0.025)
Deposit Zone	9.4	3048
HAZ	9.4	3128
Base metal	9.4	3048

DAICHIN

DKD 11

Shielded Metal Arc Welding

For Cold Working Tools and Dies Made of SKD-11 (JIS). DC53, DCMX High Carbon Alloy for Severe Abrasive Wear and Mild Impact Applications. Responds to Post-Weld Treatments.

DKD 11

USES:

Designed for cold working dies, such as SKD11 (JIS). DC53, DCMX Recommended for overlaying and building up edges where post-weld heat treatment is required.

Typical applications are blanking dies, gauges, cold trimmer dies, plastic molds, drawing dies, punches, slitters, forming dies, and thread rolling dies.

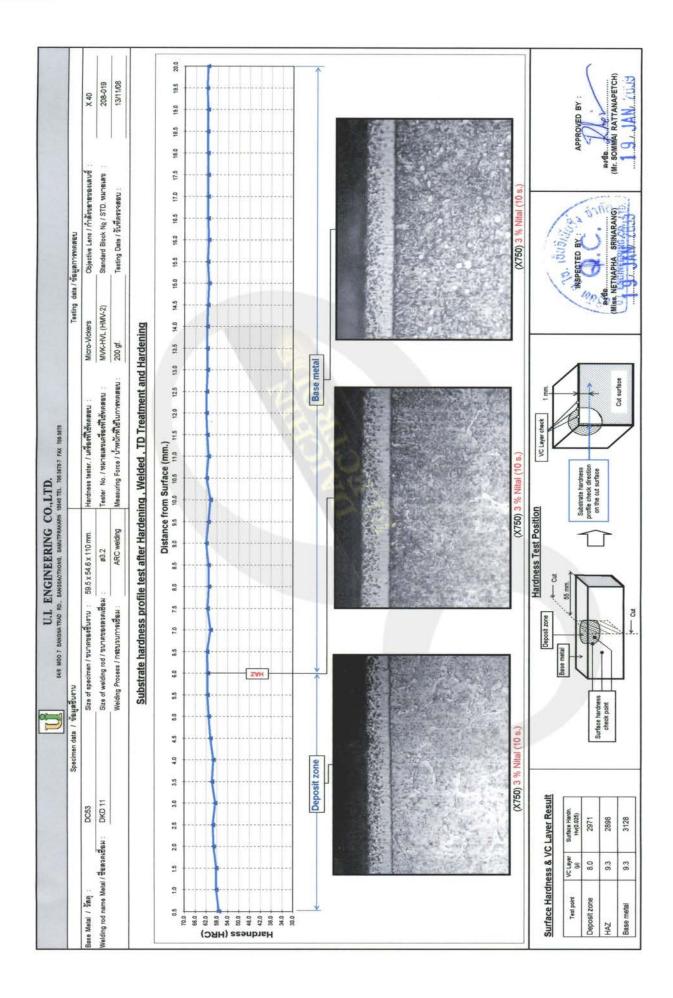
CHARACTERISTICS:

As hardness as deposited is HRC35-45, deposit is machinable. Hardness will increase to HRC58-60 by heat treatment. Responds to typical DC53 alloy heat treatment with excellent color-match.

PROCEDURES:

Base metal should be free of all grease, oil, oxides or other contamination. Remove fatigued or damaged metal. Preheat 650-700°C recommended for high crack sensitivity and/or quenched materials, plastic molds, and multi-layer welding. Peening is recommended after every pass for relieveing residual stress . Postheat 700°C is recommended. In case, work is difficult condition to preheat, use DIL55 HSS for cushion layer. Quenching temperature is 1,050 °C and air cooling

TECHNICAL DATA:


Hardness			HRC 35-45 as deposited HRC 58-60 after quenching						
Dominant C	hemical Co	ompositio	on		Cr, C, I	Mo, Mn		() ()	
Droportuos	Machin	ability	Welda	ability	Wea	r Res.	Heat Tr	eatment	Toughness
Propertues	Δ		0		(0		0	Δ
Quenching	Гетр.		1,000-1	,050°C		Oil/Air C	ooling		
Annealing T	emp.	830-8		880°C Furn		Furnace	Cooling		
Tempering ⁻	Гетр. 150-200°C		200°C		Air Cooli	ng			

SIZES:

Diameter(mm)	2.6	3.2	
Welding Amp.(A)	50-70	70-110	

IDENTIFICATION: RED.

Tic Coating ~TD Treatment and Hardening DKD 11T

มาตรฐานสากล Blanking die , Cold Trimming dies , Drewing dies , Punches , Forming dies , Thread rolling Dies.

ส่วนผสมทางเคมี (% wt.) C ~ 1.48 Si ~ 0.30

 $V \quad \sim \quad 0.23 \qquad \qquad Mo \quad \sim \quad 0.83$

Cr ~ 11.71 Mn ~ 0.42

เนื้อโลหะรอยเชื่อม 🖒 ความแข็ง (HRC.) ~ 38 ~ 42 As Weld

Hardening & 200 °C Tempering 58 ~ 62 (HRC.)

Quenching Temp □ 1,000 ~ 1,050 °C Oil / Air Cooling

Annealing Temp

■ 830 ~ 880 °C Furnace Cooling

Tempering Temp \implies 150 ~ 200 °C Air Cooling

เชื่อมบนเหล็ก DC53, DCMX, SKD11, SLD, AUD11

กระแสไฟฟ้าที่เชื่อม

DC-/AC (Uo: 60 V)

DIA x LENGTH (mm.)	Shield Gas		
1.6 x 1000	Oxyfuel Gas or Argon		
2.4 x 1000	Oxyfuel Gas or Argon		

คุณถักษณะเด่น

Designed for cold working dies, such as SKD11 (JIS), DC53, DCMX Building up forged metal molds punch die, dies. Recommended for overlaying and building upedges where post-weld heat treatment is required. Typical applications are blanking dies, gauges cold trimming dies, plastic mold, drawing dies, punches, slitters, forming dies and thread rolling dies. Hardness will increase to HRC58-60 BY heat treatment, responds to typical SKD-11 alloy heat treatment with excellent color-match.

Surface Hardness & vc Layer Result

Test point	VC Layer (μ)	Surface Hardn. Hv(0.025)	
Deposit Zone	8.0	2971	
HAZ	9.3	2898	
Base metal	9.3	3128	

การเชื่อมเหล็กหล่ออย่างมีประสิทธิภาพ

สาเหตุชิ้นงานแตกหรือร้าวเนื่องจาก INSERT มีการแตกร้าวหรือเป็นรอย

เหล็กหล่อจะมีความแข็งแรงคงทนน้อยกว่าเหล็กประเภทอื่นเช่น HMD5, SKD11 เป็นต้น เหล็กหล่อเมื่อ ผ่านการใช้งานมาแล้วในระยะเวลานานอาจจะเกิดการสึกกร่อนของเนื้อเหล็กการแตกร้าว เนื่องมาจากการ ขึ้นรูปชิ้นงานการเสียดสีของชิ้นงาน ส่งผลให้การขึ้นรูปของชิ้นงานเกิดการแตกร้าวเป็นรอยครูด คุณภาพ ของชิ้นงานไม่ได้ตามมาตรฐานที่กำหนด

ขั้นตอนการเตรียมงานและการเชื่อมเหล็กหล่อ

- 1. ถอดก้อน INSERT ที่มีการแตกร้าวออกมาเช็ค
- 2. ทำความสะอาคก้อน INSERT ให้เรียบร้อยก่อนการซ่อมแซม
- 3. นำ INSERT มาทำการเผาด้วยแก๊สเพื่อไล่เอาน้ำมันที่อยู่ค้างในร่องของก้อน INSERT ออกให้หมด
- 4 ทำการเจียรบากรอยที่แตกร้าวของก้อน INSERT ทิ้งไว้ให้เกิดความเย็น
- 5. ทำการเชื่อมไฟฟ้าปรับตั้งกระแสไฟฟ้าที่ 120-140 แอมแปร์
- 6. ทำการเชื่อมด้วยการเชื่อมเหล็กหล่อ CODE: DCNI99 เชื่อมโดยการเพิ่มทีละจุดโดยเชื่อมทับด้วย DC220
- 7. ทำการวิเคราะห์หลังจากการเชื่อมเพื่อจะคูว่ามีตามคหรือเปล่า
- 8. เมื่อเชื่อมเสร็จแล้วนำก้อน INSERT ไปคลายความเครียดโดยการแช่ในกากทองเหลืองให้เย็นตัว

วิธีการทำงานหลังการเชื่อมเสร็จเพื่อทำการปรับก้อน INSERT ให้ได้ตามค่าเดิม

หลังจากการเชื่อมเสร็จทำการปรับก้อน INSERT ให้ได้ตามค่าเดิม โดยทำการเช็คด้วยการใช้สีเสนเช็ด ปรับให้ได้ตามค่าของชิ้นงาน เมื่อทำการปรับก้อน INSERT แล้วให้ทำการประกอบตามเดิมแล้วทำการขึ้นตรวจ โดยการขึ้นเครื่องเช็คอีกทีหลังจากแต่งเสร็จแล้วนำก้อน INSERT มาทำการขัดด้วยหินขัดหรือกระดาษทราย ให้เกิดความเรียบและลื่นแล้วนำไปประกอบขึ้นเครื่อง TRY OUT ว่ามีรอยครูดหรือแตกร้าวหรือไม่ ถ้าชิ้นงาน อยู่ในสภาพดีให้นำก้อน INSERT ทำการชุบให้เหมือนเดิม

เรื่องการแก้ไขปัญหา PART ยนในแม่พิมพ์ PROCESS DRAW

สาเหตุการเกิดจากปัญหา PART ใน PROCESS DRAW

- 1. หน้า BLANK จับไม่เท่ากัน
- 2. การวาง MATERIAL ไม่เข้า STOPPER
- 3. การปรับ CONDITION ของ PRESS ไม่ได้
- 4. เกิดจากการที่เครื่องปั้นไม่พร้อมที่จะทำงาน
- 5. เกิดจากการที่ก้อน INSERT ยุบตัว BEAD"R" สึก

ชิ้นงานที่เกิดปัญหาการย่นและพับ

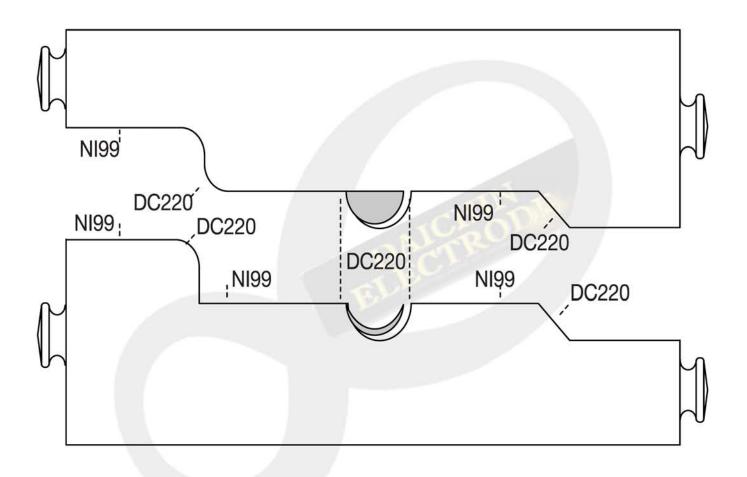
<u>การแก้ไขปัญหาเบื้องต้น</u>

- 1. เสริม SHIM ที่ BLAN แล้ว TRY หน้าเครื่อง
- 2. ปรับ STOPPER ที่ช่วยในการจับ PART
- 3. CHECK CONDITION ให้ตรงกับค่าที่กำหนด
- 4. ตรวจ CHECK AIR CUSHION DH
- 5. เชื่อม INSERT โดยลวดเชื่อมTIG DIL 220 SUPER หรือ ARC DC220 SUPER และนำมา CHECK AWASE ขัดแต่ง

<u>การแก้ไขปัญหาถาวร</u>

นำ DIE ที่มีปัญหามาทำการเชื่อมใหม่ตรงที่เกิดการยุบตัวและทำการเจียรแต่งใหม่โดยใช้เครื่องกดแม่พิมพ์
แล้วเจียรเข้าแนวเดิมแล้วนำมาขัดแต่งผิวให้เรียบโดยใช้หินขัดผิวขัดแล้วตามด้วยกระคาษทรายไล่ขัดตามเบอร์
ตั้งแต่หยาบลงมาแล้วนำ DIE ไป TRY-OUT พอเสร็จก็ส่งก้อน INSERT ไปชุบให้มีความแข็งและมันเงาจะ
ทำให้การเกิดปัญหาย่นหมดไป

ขั้นตอนที่ 1


ขั้นตอนที่ 2

ขั้นตอนที่ 3

วิธีเชื่อมงานขึ้นรูป

DCNI99 = เชื่อมผิวที่ไม่ต้องการการเสียดสีสูง

DC220 = เชื่อม บีท อาร์ ต้องการการเสียดสีสูง

Hard Facing Direct Onto Cast Iron Mold DC220

(HARD CHROME)

มาตรฐานสากล		Surfacing on Die	s Face of Cast Iron and Bead			
ส่วนผสมทางเคมี (% wt.))	C ~ 0.04 P ~	0.024 Mo ~ 0.50			
Chemistry		Mn \sim 1.40 S \sim	0.002 Ni ~ 6.14			
		Si ~ 0.17 Cr ~	4.98 Fe ~ Balance.			
ใช้เชื่อมบนเหล็ก	\Longrightarrow	FC-250,FC-300,GM238M,FCD-500	0,600,FCD550/550M,FCD-700,KSCD80015,			
		(FCD FH),GM240M,CH-891,GM24	41,NKM240,HD-700,GGG-70L,TGC-600			
ชิ้นงาน	\Longrightarrow	งานขึ้นรูปเหล็กหล่อใช้เชื่อมเติมเนื้อแม่พิมพ์เหล็กหล่อที่ขาดหายไป				
		เชื่อมเสริมเนื้อเชื่อม BEAD R ต้องกา	รความแข็งเหนียวลื่นทนการเสียคสีสูง			
		เชื่อมส่งชุบ HARD CHROME ติดดีเ	ยี่ <mark>ยมไม่ลอกหรือเป็นบ่าสูงต่ำมีค่าความแข็</mark> ง			
		และค่าซึมลึกของผิว HARD CHRON	ME อยู่ในเกณฑ์มาตราฐานที่โรงชุบกำหนด			
กระแสไฟฟ้าที่เชื่อม		DC+/AC (Uo: 60 V)				
		DIA x LENGTH (MM.)	กระแสไฟฟ้าเชื่อม (AMP.)			
		2.5 x 350	45 ~ 65			
			1			
		3.2 x 350	70 ~ 90			
		3.2 x 350 4.0 x 350	70 ~ 90 100 ~ 120			
คุณสมบัติทางกล	₽					
คุณสมบัติทางกล	₽	4.0 x 350	100 ~ 120			
คุณสมบัติทางกล	₽	4.0 x 350	100 ~ 120 : 1 st Layer 42 ~ 47 HRC.			
คุณสมบัติทางกล คุณลักษณะเด่น	₽	4.0 x 350 As Welded ความแข็ง (HRC.)	100 ~ 120 : 1 st Layer 42 ~ 47 HRC. : 2 nd Layer 44 ~ 48 HRC.			
		4.0 x 350 As Welded ความแข็ง (HRC.)	100 ~ 120 : 1 st Layer			
		4.0 x 350 As Welded ความแข็ง (HRC.) เชื่อมช่อมแม่พิมพ์เหล็กหล่อที่ต้องกา เชื่อมช่อมทนต่อการเสียดสีบน BEA	100 ~ 120 : 1 st Layer 42 ~ 47 HRC. : 2 nd Layer 44 ~ 48 HRC. : 3 rd Layer 30 ~ 37 HRC.			
		4.0 x 350 As Welded ความแข็ง (HRC.) เชื่อมซ่อมแม่พิมพ์เหล็กหล่อที่ต้องกา เชื่อมซ่อมทนต่อการเสียคสีบน BEA เชื่อมแล้วนำไปชุบเคลือบผิว HARD	100 ~ 120 : 1 st Layer 42 ~ 47 HRC. : 2 nd Layer 44 ~ 48 HRC. : 3 rd Layer 30 ~ 37 HRC. วรป้องกันการเสียดสีสูง ก้อน INSERT DR BENDING, CAM, FLANG DIE			

Hard Facing Direct Onto Cast Iron Mold DC RE-COPY

(RE-COPY)

0120		2012	200
มาต	เวอ	เนต	ma

Re-Copy Surfacing on Dies Face of Cast Iron and Bead

ส่วนผสมทางเคมี (% wt.)	C	~	0.090	P	7	0.023	Mo	?	0.46
Chemistry	Mn	~	1.61	S	2	0.001	Ni	~	15.72
	Si	2	0.47	Cr	~	23.02	Fe	~	Balance.

ใช้เชื่อมบนเหล็ก

FC-250,FC-300,GM238M,FCD-500,600,FCD550/550M,FCD-700,KSCD80015, (FCD FH),GM240M,CH-891,GM241,NKM240,HD-700,GGG-70L,TGC-600

ชิ้นงาน

งานขึ้นรูปเหล็กหล่อใช้เชื่อมเติมเนื้อแม่พิมพ์เหล็กหล่อที่ขาดหายไป เชื่อมเสริมเนื้อเชื่อม BEAD R ต้องการความแข็งเหนียวลื่นทนการเสียดสีสูง เชื่อมส่งชุบ HARD CHROME ติดดีเยี่ยมไม่ลอกหรือเป็นบ่าสูงต่ำมีค่าความแข็ง และค่าซึมลึกของผิว HARD CHROME อยู่ในเกณฑ์มาตราฐานที่โรงชุบกำหนด

กระแสไฟฟ้าที่เชื่อม

DC+/AC (Uo: 60 V)

DIA x LENGTH (MM.)	กระแสไฟฟ้าเชื่อม (AMP.)
2.5 x 350	45 ~ 65
3.2 x 350	70 ~ 90
4.0 x 350	100 ~ 120

คุณสมบัติทางกล

As Welded ความแข็ง (HRC.)

: 1 st Layer $28 \sim 32$ HRC.

: 2 nd Layer $20 \sim 30$ HRC.

:3 rd Layer $20 \sim 30$ HRC.

คุณลักษณะเด่น

- 🖙 เชื่อมซ่อมแม่พิมพ์เหลีกหล่อ ไม่ต้องอุ่นชิ้นงานที่ต้องการนำไป RE-COPY
- 🖈 เชื่อมพ่อมทนต่อการเสียคสีบน BEAD R BENDING, CAM, FLANG DIE
- 🖶 เชื่อมแล้วนำไปชุบเคลือบผิว HARD CHROME ไม่หลุคร่อนหรือเป็นบ่าสูงต่ำ
- 🖶 เชื่อมง่าย แนวเชื่อมสวยไม่มีตามค โดยมีคุณสมบัติต่อต้านการแตกร้าวได้ดี

Hard Facing Direct Onto Cast Iron DC220 SUPER

(HARD CHROME)

มาต	158	าาเส	ากล
24 IL	103	1 10 01	11101

Surfacing on Dies Face of Cast Iron and Bead

ส่วนผสมทางเคมี (% wt.)		C	~	0.053	P	~	0.023	Mo ~ 0.41
Chemistry		Mn	~	0.91	S	~	0.004	Ni ~ 9.36
		Si	~	0.60	Cr	2	4.93	Fe & Orther Balance.
ใช้เชื่อมบนเหล็ก	\Longrightarrow	FC-25	0,FC	-300,GM2381	M,FC	D-500	,600,FCD550/	7550M,FCD-700,KSCD80015,
		(FCD	FH),	GM240M,CH	-891	GM24	41,NKM240,H	D-700,GGG-70L,TGC-600
	\Longrightarrow	រអតិ៍ក]	FLA	ME HARD				
		TGC-6	500,S	SFH 5,HMD,S	X-10	5V,IC	D5,OKS 5,GC	05,GM 190/M ,KY870,HK-600A/B
ชิ้นงาน	\Longrightarrow	งานขึ้น	เร็ปเ	หลึกหล่อใช้เชื่	อมเติ	มเนื้อเ	เม่พิมพ์เห <mark>ล็</mark> กห	ล่อที่ขาดหายไป
		เชื่อมเสริมเนื้อเชื่อม BEAD R ต้องการความแข็งเหนียวลื่นทนการเสียคสีสูง						
		เชื่อมส่งชุบ HARD CHROME ติดดีเยี่ยมไม่ลอกหรือเป็นบ่าสูงต่ำมีค่าความแข็ง						
		และค่า	ซึมสิ	์กของผิว HAI	RD C	HRON	ME อยู่ในเกณฑ	า์มาตราฐานที่โรงช ุบกำหน ด
							N-E-V	Nev Nev

กระแสไฟฟ้าที่เชื่อม

 DIA x LENGTH (MM.)
 กระแสไฟฟ้าเชื่อม (AMP.)

 2.5 x 350
 45 ~ 65

3.2 x 350 $70 \sim 90$ 4.0 x 350 $100 \sim 120$

คุณสมบัติทางกล

🖈 As Welded ความแข็ง (HRC.)

DC+/AC (Uo: 60 V)

: 1 st Layer $30 \sim 35$ HRC.

: 2 nd Layer $44 \sim 52$ HRC.

: 3 rd Layer 46~49 HRC.

คุณลักษณะเด่น

🖈 เชื่อมซ่อมแม่พิมพ์เหล็กหล่อที่ต้องการป้องกันการเสียคสีสูง ก้อน INSERT

🖈 เชื่อมพ่อมทนต่อการเสียคสีบน BEAD R BENDING, CAM, FLANG DIE

🖈 เชื่อมแล้วนำไปชุบเคลือบผิว HARD CHROME ไม่หลุดร่อนหรือเป็นบ่าสูงค่ำ

🖈 ไม่ต้องอุ่นชิ้นงานแนวเชื่อมเมื่อเจียรแต่งสีผิวจะมีสีผิวใกล้เคียงกับ HARD CHROME 90 %

🖈 เชื่อมง่าย แนวเชื่อมสวยไม่มีตามค โดยมีคุณสมบัติต่อต้านการแตกร้าวได้คื

Hard Facing Direct Onto Cast Iron DIL220 SUPER

มาตรฐานสากล

Surfacing on Dies Face of Iron and Bead

ส่วนผสมทางเคมี (% wt.)	C	~	0.009	P	2	0.007	Mo ~ 0.75
Chemistry	Mn	7	1.25	S	~	0.007	Ni ~ 8.20
	Si	~	0.58	Cr	~	4.95	Fe & Orther Balance.

ใช้เชื่อมบนเหล็ก

⇒ FC-250,FC-300,GM238M,FCD-500,600,FCD550/550M,FCD-700,KSCD80015,

(FCD FH),GM240M,CH-891,GM241,NKM240,HD-700,GGG-70L,TGC-600

ชิ้นงาน

➡ งานขึ้นรูปเหล็กหล่อใช้เชื่อมเติมเนื้อแม่พิมพ์เหล็กหล่อที่ขาดหายไป
เชื่อมเสริมเนื้อเชื่อม BEAD R ต้องการความแข็งเหนียวลื่นทนการเสียคสีสูง
เชื่อมส่งชุบ HARD CHROME ติดดีเยี่ยมไม่ลอกหรือเป็นบ่าสูงต่ำมีค่าความแข็ง
และค่าซึมลึกของผิว HARD CHROME อยู่ในเกณฑ์มาตราฐานที่โรงชุบกำหนด

กระแสไฟฟ้าที่เชื่อม

DIA x LENGTH (mm.)	Shield Gas
1.6 x 1000	Oxyfuel Gas or Argon
2.4 x 1000	Oxyfuel Gas or Argon

คุณสมบัติทางกล

⇒ As Welded ความแข็ง (HRC.) : 1 st Layer 30 ~ 35 HRC.

: 2 nd Layer $44 \sim 52$ HRC.

: 3 rd Layer 46~49 HRC.

คุณลักษณะเด่น

- 🖈 เชื่อมซ่อมแม่พิมพ์เหล็กหล่อที่ต้องการป้องกันการเสียคสีสูง ก้อน INSERT
- 🖒 เชื่อมซ่อมทนต่อการเสียดสีบน BEAD R BENDING, CAM, FLANG DIE
- 🖶 เชื่อมแล้วนำไปชุบเคลือบผิว HARD CHROME ไม่หลุดร่อนหรือเป็นบ่าสูงค่ำ
- 🖈 ไม่ต้องอุ่นชิ้นงานแนวเชื่อมเมื่อเจียรแต่งสีผิวจะมีสีผิวใก้ลเคียงกับ HARD CHROME 90 %
- 🖶 เชื่อมง่าย แนวเชื่อมสวยไม่มีตามคโคยมีคุณสมบัติต่อต้านการแตกร้าวได้ดี

Hard Facing Direct Onto Cast Iron DC220 SUPER HARD

(HARD CHROME

มาตรฐานสากล	Surfacing on Dies	Face of Cast Iron and Bead
ส่วนผสมทางเคมี (% wt.)	C ~ 0.22 P ~	0.024 Mo ~ 0.42
Chemistry	Mn ~ 3.96 S ~	0.004 Ni ~ 2.38
	Si ~ 0.29 Cr ~	5.22 Fe & Orther Balance.
ใช้เชื่อมบนเหล็ก 🖙	FC-250,FC-300,GM238M,FCD-500,	600,FCD550/550M,FCD-700,KSCD80015,
	(FCD FH),GM240M,CH-891,GM24	,NKM240,HD-700,GGG-70L,TGC-600
ightharpoons	เหล็ก FLAME HARD	
	TGC-600,SFH 5,HMD,SX-105V,ICI	05,OKS 5,GO5,GM 190/M ,KY870,HK-600A/B
ขึ้นงาน 🖙	งานขึ้นรูปเหล็กหล่อใช้เชื่อมเติมเนื้อแ	ม่พิมพ์เหล็กหล่อที่ขาคหายไป
	เชื่อมเสริมเนื้อเชื่อม BEAD R ต้องการ	ความแ <mark>ข็งเหนียวลื่นทนกา</mark> รเสียคสีสูง
	เชื่อมส่งชุบ HARD CHROME ติดดีเยื่	ยมไม่ลอกห <mark>รื</mark> อเป็นบ่าส <mark>ูงต่ำ</mark> มีค่าความแข็ง
	และค่าซึมลึกของผิว HARD CHROM	E อยู่ในเกณฑ์มาตราฐานที่โรงชุบกำหนด
กระแสไฟฟ้าที่เชื่อม	DC+/AC (Uo: 60 V)	
	DIA x LENGTH (MM.)	กระแสไฟฟ้าเชื่อม (AMP.)
	2.5 x 350	45 ~ 65
	3.2 x 350	70 ~ 90
	4.0 x 350	100 ~ 120

คุณสมบัติทางกล 🖶 As Welded ความแข็ง (HRC.)

STEEL	1 St Layer	2 Nd Layer	3 Rd Layer		
FC250~300	35~45 HRC.	52~55 HRC.	51~55 HRC.		
GM 241	35~47 HRC.	52~57 HRC.	52~56 HRC.		

คุณลักษณะเด่น	\Longrightarrow	เชื่อมซ่อมแม่พิมพ์เหล็กหล่อที่ต้องการป้องกันการเสียคสีสูง ก้อน INSERT
	\Longrightarrow	เชื่อมซ่อมทนต่อการเสียคสีบน BEAD R BENDING , CAM , FLANG DIE
	\Longrightarrow	เชื่อมแล้วนำไปชุบเคลือบผิว HARD CHROME ไม่หลุดร่อนหรือเป็นบ่าสูงต่ำ
	\Longrightarrow	ไม่ต้องอุ่นชิ้นงาน แนวเชื่อมเมื่อเจียรแต่งสีผิวจะมีสีผิวใกล้เคียงกับ HARD CHROME 90 %
	\Longrightarrow	เชื่อมง่ายแนวเชื่อมสวยไม่มีตามคโคยมีคุณสมบัติต่อต้านการแตกร้าวได้ดี

บริษัท ยู.โอ. เอ็นจีเนียริ่ง จำกัด U.I. ENGINEERING CO., LTD.

ต้นฉบับ

54/6 Moo 7 Bangna-Trad Rd., Bangsaothong, Samutprakarn 10540 Tel. 0-27083670-6, 0-23381541-2 Fax. 0-27083678, 0-2338-1116

เล่มที่ 1451		เอก	สารรั	ับงา	u		เลขที่	72	250	6
วันที่ 10-3-54-		, A	В	С	D	Ε	F	G	н	1
CLIENT NAME: 100 1 100	(ପ୍ରଥ)	RECE	VED (Š	บงาน		١,	DELIVERY	/ (ส่งงา	п)	
250	11/0/01	/				100				
ATTENTION: ติดต่อ:		1					Z BY CLI	190		พานเอง
Tel/Fax:		∐ ВҮ	บ.เ. (บริ	การรับงา	u)	Į l	BY U.I.	(บริการ	ส่งงาน)	
STEEL/เกรดเหล็ก +C300	P/O N	0			DW	G NO.				1
HARDNESS/ความแข็ง จาง ind om Llar 9				$\overline{}$			5,00	,J		
DEPTH/ความลึก		/	1OC	222.	X		00.0	0		
atylinusu 2 PCS		,(1		5)				
WEIGHT/น้ำหนัก 3.5				\geq	=	1,	83×			
HT. PROCESS (กรรมวิธีการชุบ)	1./	, \	10151	rn'o	EC 3	94				
Vacuum Nitriding Neutron		/			17	Ψ	83×	23		
Carburizing Induction Annealing	1	lo .	DC 2	20	0					
Normalizing Solution treatment Flame				7.14	<u> </u>	_				
STEEL/เกรดเหล็ก	P/O N	p,	• • • • • • • • • • • • • • • • • • • •		DW	G NO.		3	A Ving	2
HARDNESS/ADTIMUS BRACK Wall sale	0	non	1200				-701	2		
DEPTHURSHAR INTURE SCEN	CB 111	الكار	1	-	3	-	2000		;	
QTY/จำนวน	200	010	R		-		>/			
WEIGHT/น้ำหนัก		1	1	A		-	200	2	6	
HT. PROCESS (กรรมวิธีการชุบ)		CTM	2000		2/	. /-	EC3	25	5(1	
☐ Vacuum ☐ Nitriding ☐ Neutron	1		44.	/	125	wal	1	1		
Carburizing Induction Annealing		17	Y				201	200		
Normaliting Solution treatment Flame	-	<u> </u>	-)	/	9	5+			A STATE OF THE STA	
RECEIVER/(tij) Laty	OPERA	рін ПОТА	מנכיוו			WER	GHT (น้ำหนั	5.526 MINE PLACE	5	
- Lomit	4	No	DC	991	<u> </u>	6,50		3,3		Kgs.
						190	1			
								9		
		_	1		_	_				
				/	1		/	TEN.	/	1
	,	/ -	/	/		\	\ /		/	
HARDENING Temper (1)		Temp		100	Temper	(3)	1	emper (4	1)	-
Result Hardness			Teste	d By:		Inen	octed By			
Test 1 2 3	4						ected By			
work-piece No: ายพระเฮียดตามเอกลาวแนน	•						.//	. ()
work-pièce No.	(42	(, i	Appr	oved By			
VACUUM HEAT No Carb, Neut, TF1. No	law!		1		1		//			
หลังจากกำหนดงานเสร็จ ถ้าลูกค้าไม่มารับงานคืนภายใน	าร วันถือว่	100	24	147600	22		CHEARLESCALL CO.			อไป
	CHARLES TO SELECT THE SECOND S	795	48.0		40.00		- 17-17-18 Comment of the Comment of	200		
. 3. เหล็กขุบน้ำ ทางบริษัทฯ จะรับผิดชอบเฉพาะค่าอบขุบเท่า	กนั้น				1	Holder)	100	3		
						ลงวนสิ	ทธิที่จะไม่รั	บผิดชอบ	โดๆ ทั้งสื	iu
 เหล็กสีฟ้า, หัวแดง, เหล็กเหนียว, S-45C, ทางบริษัทฯ จ 	ะเมรบผคช	อบถาชนง	านเลยห	ายหลงการ	ufin -	1				13

UI-FRE-001 REV.02 : 01/04/10

U.I. ENGINEERING CO.,LTD.

54/6 MOO 7 BANGNA-TRAD RD., BANGSAOTHONG, SAMUTPRAKARN 10540 TEL. 708-3670-7 FAX 708-3678

Doc No: QC 11/ 2339

Receiving No: 1451/72506

Contamor data 1 4		

			Cu	ustomer data / ช่อมูลลูกค่า	
Customer / บริษัท :	Customer / บริษัท : S & V MARKETING		Invoice No. / ใบส่งของเลขที่ :	*	
Part Name / ชื่อขึ้นงาน :				Part No. / เลซที่ขึ้นงาน :	
Material / วัสดุ :	FC300			Drawing No. / หมายเลข DWG. :	
Weight / น้ำหนัก :	1.75	kgs.		Surface Hardn. / ความแช่งผิวที่กำหนด :	
Quantity / จำนวนชิ้นงาน :	1	pc.		Core Hardn. / ความแช็งแกนที่กำหนด :	•
Quantity Total / จำนวนงานทั้	чина :	1	рс.	Effective case depth. / ความลึกที่กำหนด :	•
Lot No. / หมายเลช Lot :				White Layer Thickn./ ความหนาไวด์เลเยอร์ที่กำหนด	: :
			Heat tr	reatment data / ข้อมูลการอบซุบ	
Process H.T. / ขมวนการอบช	ហ :			HT. Date / วันที่ทำการอบชุบ :	•
H.T. Temperature / ลุณหภูมิธ	majn :			Batch No / หมายเลข HT. :	•
H.T. Time / เวลาแข่อบชุบ :				Media / สารที่ใช้ในการเย็นตัว :	-

Testing data / ชัยบุลการพลสอบ

Hardness tester. / เครื่องที่ใช้ทดสอบ :	Rockwell B	Measuring Force / น้ำหนักที่ใช้ในการพดสอบ :	100 kg.
Tester No. / หมายเลขเครื่องที่ใช้พลสอบ :	AKASHI (HR-5)	Timer / เวลาที่ใช้ในการทดสอบ :	10 s.
Standard Block No / STD. พมายเลข :	33-1595	Testing Date / วันที่คราจสอบ :	10/03/11

SURFACE HARDNESS RESULT / ผลการพดสอบความแข็งผิว

W/P No.	Test Point	HRB	НВ
ช้าเงานแบน TM 2000	1	88	175
	2	88	175
	3	85	165
	4	88	175
	5	87	172
	Average	87	172
ชั้นงานแบบ DC220 -	1	81	153
	2	82	156
	3	81	153
	4	90	185
	5	95	208
	Average	86	171
FC 300	1	86	169
	2	87	172
	Average	87	171

TEST SURFACE HARDNESS
TOBILIDAY
BY ACTUAL W/P
TAINMENTALY / PICTURE

N/A

Micro Structure / ภาพโครงสร้าง x 219

MAR, 2011

APPROVED BY :

(Mr. SOMMA) PATTANAPETCH

UI-FQC-013_REV. 02: 05/08/2009

Cast Iron Electrode

DCW

(DRAW DIE)

มาตรฐานสากล

For Bi - Metal ferro - Nickel

AWS/SFA A 5.15 ~ Enife Ci DIN 8573 ~ Enife - 1 - BG11

ส่วนผสมทางเคมี (% wt.)

C ~ 0.7

Si ~ 3.8

Chemistry

S ~ 0.03

Cu ~ 2.3

Ni ~ 54

Al ~ 0.97

Mn ~ 2.3

Balance

ใช้เชื่อมบนเหล็ก

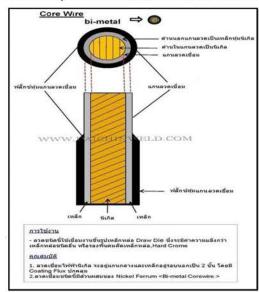
ightharpoons

FC-250, FC-300, GM238M, FCD-500, 600, FCD550/550M, FCD-700, KSCD80015,

(FCD FH),GM240M,CH-891,GM241,NKM240,HD-700,GGG-70L,TGC-600

กระแสไฟฟ้าที่เชื่อม

DC+/AC (Uo: 60 V)


DIA x LENGTH (MM.)	กระแสไฟฟ้าเชื่อม (AMP.)			
2.5 x 350	45 ~ 65			
3.2 x 350	70 ~ 90			
4.0 x 350	100 ~ 120			

คุณสมบัติทางกล

- Tensile Strength ~ 76,000 psi (525 MPA)
- Yield Strength ~ 53000 psi (370 MPA)
- □⇒ Hardness ~ 200 HB

คุณลักษณะเด่น

- ผลิตจากนิเกิล 54 % หุ้มฟลั๊กซ์เบสิคปานกลาง มาก ที่ได้ถูกออกแบบ
 มาสำหรับเนื้อเชื่อมที่มีความแข็งของแม่พิมพ์เหล็กหล่อ
- 🖶 เชื่อมได้ดีในทุกท่าเชื่อม หรือเชื่อมรองพื้นคมตัดบนเหล็กหล่อ

Cast Iron Electrode

DCNi 60Fe

มาตรฐานสากล

For Repairing of Cast Iron (Special Iron-36%Nickel Core Rod)

ส่วนผสมทางเคมี (% wt.)

C ~ 1.1

 $S \sim 0.003$

Special Element

Fe ~ Balance

P ~ 0.005

Ni ~ 37

Mn ~ 0.79

Si ~ 0.65

ใช้เชื่อมบนเหล็ก

FC-250,FC-300,GM238M,FCD-500,600,FCD550/550M,FCD-700,KSCD80015,
(FCD FH),GM240M,CH-891,GM241,NKM240,HD-700,GGG-70L,TGC-600

กระแสไฟฟ้าที่เชื่อม

DC+/AC (Uo: 60 V)

DIA x LENGTH (MM.)	กระแสไฟฟ้าเชื่อม (AMP.)		
2.5 x 350	45 ~ 65		
3.2 x 350	70 ~ 90		
4.0 x 350	100 ~ 120		

คุณสมบัติทางกล

Tensile Strength (N/mm²): 635

HRC. 25~30

คุณลักษณะเค่น

- ผลิตจากนิเกิล 37 % หุ้มฟลั๊กซ์เบสิค ปานกลาง มาก ที่ได้ถูกออกแบบ มาสำหรับเนื้อเชื่อมที่มีความแข็งของแม่พิมพ์เหล็กหล่อ
- 🖈 เชื่อมได้ดีในทุกท่าเชื่อม สามารถเชื่อมได้จนหมดเส้น
- 🖈 งานขึ้นรูปเหล็กหล่อ, งานต่อชนเหล็กหล่อกับเหล็กเหนียว
- 🖈 เชื่อมเหล็กหล่อได้ดีมาก โดยไม่จำเป็นต้องอุ่นชิ้นงานก่อนเชื่อม
- 🖈 เชื่อมซ่อมทนต่อการเสียคสีบน BEAD R BENDING , CAM , FLANG DIE

Hard Surfacing on to Cast Iron Cold-Press Molds DCNI60M

มาตรฐานสากล Build -up Welded On Dies Face

Gas Tungsten Arc Welding for Hard Surfacing Shield gas Ar+10-20%CO2 Polarity DC-EP

ส่วนผสมทางเคมี (% wt.)

C ~ 0.21

P ~ 0.003

Ni ~ 36

Chemistry

Si ~ 0.32

S ~ 0.009

Mn ~ 1.21

Fe & Orther

คุณสมบัติทางกล

🖈 As Welded ความแข็ง (HRC.)

: 1 st Layer 15 ~ 20 HRC.

: 2 nd Layer 18 ~ 25 HRC.

: 3 rd Layer 20 ~ 22 HRC.

คุณถักษณะเด่น

🖈 เชื่อมง่าย เวลาเชื่อมไม่สะท้านมือ ใช้เชื่อมบนแม่พิมพ์เหล็กหล่อเท่านั้น

ชิ้นงาน

เชื่อมด้วยเครื่องเชื่อม (Mag Ar +10 -20%CO₂) (Polarity ~ De -Ep)

ตั้งไฟประมาณ 80 ~ 110 AMP

ใช้ลวดเชื่อม DCNI 60M ขนาด 1.2 MM. เชื่อม 2-3 ชั้น จำนวน 3 แถว เชื่อมสลับแนว ไม่ให้รอยต่อตรงกัน เชื่อมให้เลยแนวบาก เชื่อมเสร็จแล้วแต่ละแนวเชื่อมใช้ฆ้อนทุบ อัดแนวเชื่อมให้แน่นแต่ละแนวปล่อยให้เย็นตัวในอากาศแล้ว Machine ให้ได้ ค่าตามมาตราฐาน

เชื่อมบนเหล็ก

FC-250, FC-300, GM, 238M, FCD-500, 600, FCD550/550M
FCD-700, KSCD80015, (FCDFH) GM 240M, CH-891, GM241,
NKM240, HD-700, GGG-70L, TGC-600

DIA (mm.)	KG.
1.2	12.5

Cast Iron Electrode

DCNi 99

มาตรฐานสากล

CLASSIFICATION: JIS Z3252 DFCNi (AWS A5.15ENi-ClK)

ส่วนผสมทางเคมี (% wt.)	C	~	0.48	P ~	0.004	Ni ~ Balance
Chemistry	Si	2	0.39	S ~	0.003	Special Element $\sim 0.3 \sim 1.0$

 $Mn \sim 0.22 \qquad Fe \sim 1.50$

ใช้เชื่อมบนเหล็ก

FC-250,FC-300,GM238M,FCD-500,600,FCD550/550M,FCD-700,KSCD80015, (FCD FH),GM240M,CH-891,GM241,NKM240,HD-700,GGG-70L,TGC-600

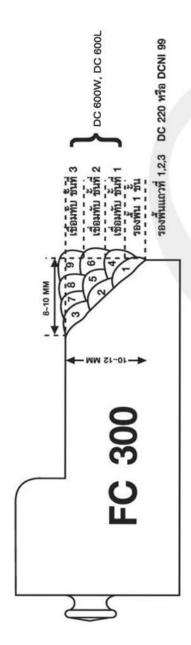
กระแสไฟฟ้าที่เชื่อม

DC+/AC (Uo: 60 V)

DIA x LENGTH (MM.)	กระแสไฟฟ้าเชื่อม (AMP.)		
2.5 x 350	45 ~ 65		
3.2 x 350	70 ~ 90		
4.0 x 350	100 ~ 120		

คุณสมบัติทางกล

Tensile Strength (N/mm²): 300 ~ 400


HRB: 100~150

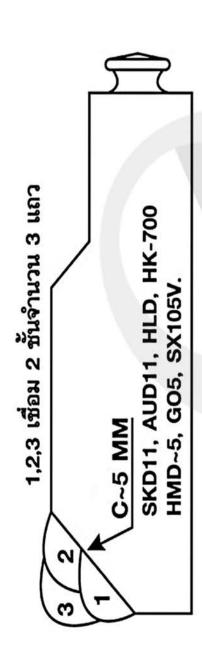
คุณลักษณะเด่น

- 🖈 ผลิตจากนิเกิลบริสุทธิ์ที่หุ้มฟลั๊กซ์เบสิค ปานกลาง มาก ที่ได้ถูกออกแบบ มาเป็นพิเศษ สำหรับเชื่อมแม่พิมพ์เหล็กหล่อ
- 🖈 เชื่อมได้ดีในทุกท่าเชื่อม สามารถเชื่อมได้จนหมดเส้นและไม่แดงกลางเส้นจนแตก
- 🖈 เชื่อมเหล็กหล่อได้ดีมาก โดยไม่จำเป็นต้องอุ่นชิ้นงานก่อนเชื่อม
- เนื้อเชื่อมนิเกิลจะไม่ละลายการ์บอนออกจากชิ้นงานจึงให้ความเหนียวอ่อน
 และความอ่อนนุ่มที่ผิวทำให้กลึงได้ง่าย และยังคงความแข็งแรงไว้ได้ในขณะ
 เดียวกัน ขึ้สแลคไม่ฝังในเนื้อเชื่อม

การเตรียมชินงานเชื่อม CUTTING BLADES (คมตัดบนเหล็กหล่อ)

- 1. MACHINE ให้ได้ตามขนาดค่า C กว้าง 8∼10 MM.ลึก 8∼12 MM. และอุ่นชิ้นงานที่ 200 C°
- 2. ตั้งกระแสไฟเชื่อมที่ 80~110 AMP.
- เชื่อมรองพื้นด้วย DC220 หรือ DCNI99 จำนวน 1 ชั้น หรือ 2 ชั้น 3 แนวเชื่อม
- 4. เชื่อมทับด้วยลวดเชื่อมคมตัด DC 600W, DC 600L (เป็นลวด AIR HARDENING ชุบแข็งโดยปล่อยให้เย็นในอากาศ) 2~3 ชั้น 6 แนวเชื่อม เชื่อมให้เลยแนวบาก ก่อนเชื่อมทับแต่ละแนวให้เอา Slag ออกให้หมด
- ต้องทำการเชื่อมคมตัดให้เสร็จในคราวเดียว ถ้าไม่เสร็จในคราวเดียวต้องอุ่นชื้นงานที่ 200 C° ใหม่
- ในการเชื่อมแต่ละแนวเชื่อม จะอยู่ประมาณ 80~100 MM. เชื่อมสลับแนวอย่าให้รอยต่อตรงกัน

ข้อสำคัญ


เชื่อมแต่ละแนวให้ใช้ฆ้อนทุบอัดแนวเชื่อมให้แน่น

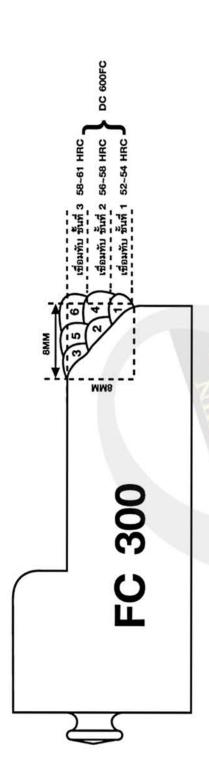
คุณสมบัติลวดเชื่อม

- 1. ลวดเชื่อม DC220, DC220 SUPER มีคุณสมบัติหลากหลายรองพื้นก่อนคมดัดหรือHARD CHROME ได้ความแข็งขณะเชื่อมเสร็จ 45∼50 HRC.
- 2. ลวดคมตัด DC600W มีคุณสมบัติเป็นลวดเชื่อมคมตัดขณะเชื่อมเสร็จจะมีความแข็งอยู่ที่ 50~52 HRC. ปล่อยให้เย็นในอากาศ ความแข็งจะอยู่ที่ 59~61 HRC.

การเตรียมชิ้นงานเชื่อมช่อม CUTTING BLADES (ARC WELDING) ตระกูลเหล็กแข็ง โดยไม่ต้องรองพื้น

- MACHINE ให้ได้ตามขนาดค่า C~5 MM. และอุ่นชิ้นงานประมาณ 350 C°
- 2. ใช้ลวดเชื่อม DC600W เชื่อมจำนวน 2 ชั้น จำนวน 3 แถ**ว เชื่อมสล**ับแนวเชื่อมให้เลยแนวบากแต่ละแนวเชื่อมให้เอา Slag ออกให้หมด เชื่อมเสร็จแต่ละแนวให้ใช้ฆ้อนทุบอัดแนวเชื่อมให้แน่น
- 3. ปล่อยให้เย็นในอากาศแล้ว MACHINE ให้เป็นคมตัด

ข้อสำคัญในการเชื่อม


- 1. ก่อนซ่อมถ้าเหล็กที่ผ่านการซูบมาแล้วด้องอุ่นให้ได้อุณหภูมิ 300∼400 C°
- 2. ก่อนส่งซุบกับโรงซุบให้แจ้งทางโรงซุบให้อบอ่อน,คืนไฟ,ANNEALING ก่อนทำการซุบแข็ง

คุณสมบัติลวดเชื่อม

ลวดเชื่อมคมตัด DC600W เป็นลวดเชื่อม AIR HARDENING ชุบแข็งโดยปล่อยให้เย็นในอากาศ A2

การเตรียมชิ้นงานเชื่อม CUTTING BLADES (คมตัดบนเหล็กหล่อไม่ต้องรองพื้น)

MACHINE ให้ได้ตามขนาดค่า C กว้าง 8 MM.ลึก 8 MM. และอุ่นชิ้นงานที่ 200 C°

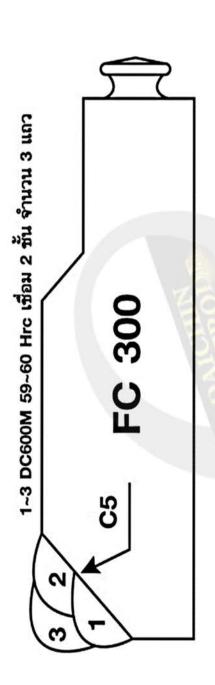
2. ตั้งกระแสไฟเชื่อมที่ 80~110 AMP.

3. เชื่อมด้วย DC600FC 1 ชั้นจะใต้ค่าความแข็งที่ 52~54 HRC.

4. เชื่อมด้วย DC600FC 2 ชั้นจะใต้ค่าความแข็งที่ 56~58 HRC.

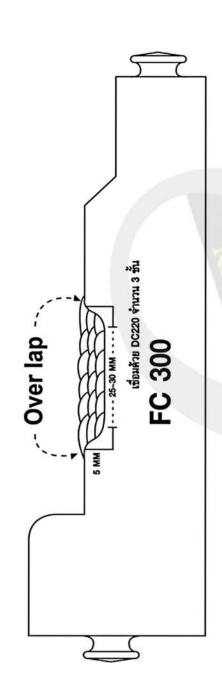
5. เชื่อมด้วย DC600FC 3 ชั้นจะได้ค่าความแข็งที่ 58~61 HRC.

6. ในการเชื่อมแต่ละแนวเชื่อมให้ใช้ฆ้อนทุบอัดแนวเชื่อมให้แน่น


7. ในการเชื่อมแต่ละแนวเชื่อมจะอยู่ประมาณ 80∼100 MM. เชื่อมสลับแนวอย่าให้รอยต่อตรงกัน

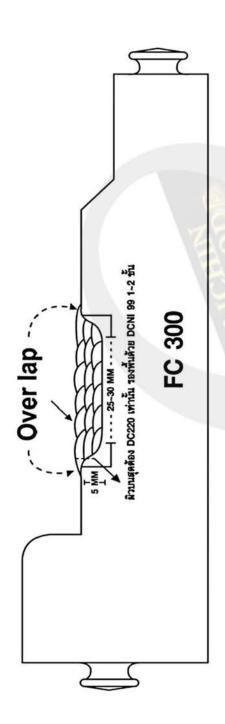
คุณสมบัติ

ลวดเชื่อมคมตัด DC600FC สามารถเชื่อมบนแม่พิมพ์เหล็กหล่อโดยไม่ต้องรองพื้น


การเตรียมชิ้นงานเชื่อม CUTTING BLADES (MAG WELDING)

- 1. MACHINE ให้ใต้ตามขนาดค่า C กว้าง 5 MM. ลึกประมาณ 8 MM. และอุ่นชิ้นงานที่ 200 C°
- 2. เชื่อมด้วยเครื่องเชื่อม MAG (Ar+10∼20%CO) (POLARITY ∼ Dc-Ep) ตั้งไฟเชื่อมโดยประมาณ 80∼100 AMP.
- 3. ใช้ลวดเชื่อม DC600M ขนาด 1.2 MM. เชื่อม 2 ชั้น จำนวน 3 แถว เชื่อมสลับแนวไม่ให้รอยต่อตรงกัน เชื่อมให้เลยแนวบาก เชื่อมเสร็จแล้วแต่ละแนวใช้ฆ้อนทุบอัดแนวเชื่อมให้แน่นแต่ละแนว
- 4. ปล่อยให้เย็นตัวในอากาศแล้ว MACHINE ให้เป็นคมตัดตามมาตรฐาน

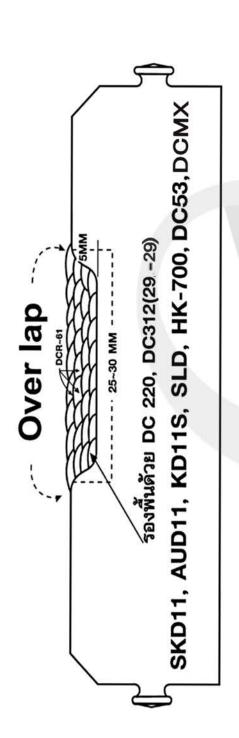
การเตรียมชินงานและเชื่อม FC300,FC ส่ง HARD CHROME


- MACHINE ให้ได้ตามขนาดที่กำหนดและอุ่นชิ้นงานประมาณ 200 C°
- 2. ตั้งไฟเครื่องเชื่อมกระแสไฟเชื่อมโดยประมาณ 80~110 AMP.
- ใช้ลาดเชื่อม DC220 เชื่อมจำนวน 3 ชั้น แต่ละแนวเชื่อม PEENING ทันทีที่เชื่อมเสร็จ แต่ละแนวต้องเอา Slag ออกให้หมด
- 4. เชื่อมให้เลยแนวบาก (OVER LAP) เชื่อมโบกใต้ไม่เกิน 10 MM.
- 5. ให้เชื่อมสลับแนวไม่ให้รอยต่อตรงกัน
- 6. MACHINE ปาดหน้าแนวเชื่อมให้เรียบหรือขัดเจียร แต่งผิวให้เรียบก่อนส่งชุบ HARD CHROME

คุณสมบัติ

ลวดเชื่อม DC220, DC220 SUPER สามารถซุบ HARD CHROMEเชื่อม BEAD R ความแข็งขณะเชื่อมเสร็จ 45~50 HRC เชื่อมซุบ HARD CHROME จะไม่เป็นแอ่งน้ำหรือเป็นบ่าสูงต่ำ

การเตรียมชินงานและเชื่อม FC300,FC ส่ง HARD CHROME


- MACHINE ให้ได้ตามขนาดที่กำหนดและอุ่นชิ้นงานที่ 200 C°
- 2. ตั้งใฟเชื่อมโดยประมาณ 80~110 AMP.
- 3. ใช้ลวดเชื่อม DCNI99 เชื่อมรองพื้น 1-2 ชั้น เพื่อเก็บตามดและเพิ่มการยึดเกาะไม่ให้เกิดตามด
- 4. ใช้ลวดเชื่อม DC220 เชื่อมทับชั้นบนสุดและให้เชื่อมเลยแนวบากคือ(OVER LAP)
- 5. แต่ละแนวเชื่อมก่อนเชื่อมทับให้เอา Slag ออกให้หมด และใช้ฆ้อนทุบอัดแนวเชื่อมให้แน่น
- 6. เชื่อมสลับแนวไม่ให้รอยต่อตรงกัน
- MACHINE ปาดหน้าแนวเชื่อมให้เรียบหรือขัดเจียร แต่งผิวให้เรียบแล้วส่งชุบ HARD CHROME

คุณสมบัติ

- 1. ลวดเชื่อม DC220 สามารถซูบ HARD CHROME เชื่อม BEAD R ความแข็งขณะเชื่อมเสร็จ 45∼50 HRC.
- 2. DCNI99 มีนิเกล 99% จะเชื่อมง่ายไม่มีบัญหา UNDER CUT สามารถอุดรูตามด แต่ไม่สามารถซุบ HARD CHROME ได้

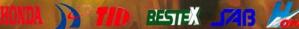
การเตรียมชินงานและเชื่อมแล้วส่งชุบแข็ง TD TREAMENT, TIC COATING

ขัดเจียรแต่งปาดหน้าให้เรียบขัดให้เงาแล้วส่งซูบแข็ง TD TREAMENT, TIC COATING, Oerlikon Balzers Coating MACHINE ชิ้นงานให้ได้ตามขนาดที่กำหนดและอุ่นชิ้นงานที่อุณหภูมิ 350 <mark>C° และ</mark>ตั้งกระแสไฟที่ 80~110 AMP. เชื่อมสลับแนวไม่ให้รอยต่อตรงกันและเชื่อมให้เลยแนวบาก (OVER LAP) แล้วทุบอัดแนวเชื่อมให้แน่น ก่อนเชื่อมทับแต่ละแนวเชื่อมต้องเอา Slag ออกให้หมดก่อนที่จะเชื่อมทับแต่ละแนวเชื่อม เดินแต่ละแนวให้เชื่อมสั้น ๆ แต่ละแนวเชื่อมจะอยู่ประมาณ 50~80 MM. เชื่อมรองพื้นด้วย DC220,DC312(29/9) จำนวน 1~2 ชั้น (TiAIN Multilayer), Kanuc Treament Coating เชื่อมทับด้วยลวดเชื่อม DCR-61 จำนวน 3 ชั้น

คุณสมบัติ

ลวดเชื่อม DCR-61 อาร์คง่ายเหมาะกับงานที่ต้องการเดิมเนื้อเชื่อมหลาย ๆ ชั้น ลวดเชื่อม DCR-61ได้ผ่านการทดสอบและรับรองจาก โรงซุบต่าง ๆ ความแข็งก่อนซุบแข็ง 59∼61 HRC. หลังจากการซูบแข็ง 58.9 HRC. จุดของการซึมลึกของผิว 7.5 ไมครอน

DAICHIN



WWW.DAICHINWELD.COM

Distributed by